
Copyright © 2001-2025 Peganza

Pascal Analyzer

Pascal Analyzer

by Peganza

Pascal Analyzer parses Delphi or Borland Pascal source
code and produces reports that help you understand your
source code better.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Pascal Analyzer

Copyright © 2001-2025 Peganza

Pascal Analyzer4

Copyright © 2001-2025 Peganza

Table of Contents

Foreword 0

Introduction 7

Known limitations 13

What's new in version 9 (April 2017, updated
May 2025)? 15

What's new in version 8 (May 2016)? 35

What's new in version 7 (November 2013)? 39

What's new in version 6 (August 2011)? 42

What's new in version 5 (May 2010)? 46

What's new in version 4 (October 2006)? 49

Command-Line Options for PAL.EXE and
PAL32.EXE 52

How to use PAL.EXE and PAL32.EXE 53

How to use PALCMD.EXE and
PALCMD32.EXE 56

Installation folders 63

Main window 65

Reports 71

... 721 All Reports

... 742 General Reports

.. 75Status Report

.. 76Strong Warnings Report

.. 82Warnings Report

.. 106Optimization Report

.. 112Code Reduction Report

.. 123Memory Report

.. 126Convention Compliance Report

.. 133Inconsistent Case Report

.. 134Prefix Report

.. 135NextGen Readiness Report

5Contents

5

Copyright © 2001-2025 Peganza

... 1363 Metrics Reports

.. 136Totals Report

.. 137Module Totals Report

.. 137Complexity Report

.. 141Object-oriented Metrics Report

... 1444 Reference Reports

.. 144Modules Report

.. 146Identifiers Report

.. 147Duplicate Identifiers Report

.. 148Similarity Report

.. 148Literal Strings/Numbers Report

.. 149Subprogram Index Report

.. 150Bindings Report

.. 150Third-party Dependencies Report

.. 151Most Called Report

.. 152Call Tree Report

.. 153Reverse Call Tree Report

.. 153Call Index Report

.. 154Exception Report

.. 154Brief Cross-reference Report

.. 155Cross-reference Report

.. 157Used Outside Report

.. 157Subprogram Parameters Report

.. 157Uses Report

.. 161Conditional Symbols Report

.. 162Directives Report

.. 163To-Do Report

.. 164Module Call Tree Report

.. 165Help Report

.. 165Searched Strings Report

.. 166Map File Report

.. 167Clone Report

... 1705 Class Reports

.. 170Class Index Report

.. 171Class Summary Report

.. 172Class Hierarchy Report

.. 172Class Field Access Report

... 1736 Control Reports

.. 173Control Index Report

.. 174Control Alignment Report

.. 174Control Size Report

.. 175Control Tab Order Report

.. 176Control Warnings Report

.. 178Property Value Report

.. 178Missing Property Report

.. 179Form Report

.. 179Events Report

Main menu 181

... 1811 File menu

... 1842 Edit menu

Pascal Analyzer6

Copyright © 2001-2025 Peganza

... 1853 Search menu

... 1864 View menu

... 1875 Analysis menu

... 1886 Options menu

.. 191 Properties - General

.. 196 Properties - Reports

.. 202 Properties - Format

.. 209 Properties - Parser

.. 217 Properties - Switches

.. 218 Preferences - General

.. 222 Preferences - Source Code

.. 225 Preferences - Editor

Help menu 229

Index 230

Introduction 7

Copyright © 2001-2025 Peganza

1 Introduction

Pascal Analyzer, or PAL for short, is a utility program that analyzes, documents, debugs,
and helps you optimize your source code. Pascal Analyzer makes a static code analysis.
It only needs the source code, unlike other similar tools that perform an analysis of the
running program. We think that PAL will help you better understand your code and
support you in producing code of higher quality, consistency, and reliability.

PAL quickly pays itself back in easier maintenance, less errors and improved quality, not
only during development, but also throughout the entire life cycle of your code.

The main window in Pascal Analyzer

On a 64-bits computer, PAL will install both the main new 64-bits version and the 32-bits
version. The 32-bits version will be installed in a separate subdirectory.

PAL.EXE – the main 64-bits Windows program with a friendly user interface
PALCMD.EXE – a 64-bits command-line analyzer

PAL32.EXE - 32-bits version
PALCMD32.EXE - 32-bits version

Pascal Analyzer8

Copyright © 2001-2025 Peganza

On a 32-bits computer, only the 32-bits versions will be installed.

The command-line analyzer produces exactly the same reports as the GUI version. You
will however most often use the GUI in PAL.EXE (or PAL32.EXE). For running analyses in
batch mode, or to integrate into a build process, use PALCMD.EXE (or PALCMD32.EXE).

There are also Delphi IDE plug-ins, PALWIZ.DLL (or PALWIZx.DLL, depending on Delphi
version), to enable the RAD Studio IDE to load a source file when double-clicking on a
report line in Pascal Analyzer. The plug-in is automatically installed and enabled. You can
enable/disable the plug-in from the Preferences dialog.

The plugins work with Delphi 5 and later versions.

Pascal Analyzer functions with Pascal/Delphi Compilers from BP7 and later:

 Borland Pascal 7 (or earlier)

 Delphi 1
 Delphi 2
 Delphi 3
 Delphi 4
 Delphi 5
 Delphi 6
 Delphi 7

 Delphi 8 for .NET
 Delphi 2005 for Win32
 Delphi 2005 for .NET
 Delphi 2006 for Win32
 Delphi 2006 for .NET
 Delphi 2007 for Win32
 Delphi 2007 for .NET
 Delphi 2009 for Win32
 Delphi 2010 for Win32

 Delphi XE for Win32

 Delphi XE2 for Win32
 Delphi XE2 for Win64
 Delphi XE2 for OSX

 Delphi XE3 for Win32
 Delphi XE3 for Win64
 Delphi XE3 for OSX

 Delphi XE4 for Win32
 Delphi XE4 for Win64
 Delphi XE4 for OSX
 Delphi XE4 for iOS Device
 Delphi XE4 for iOS Simulator

 Delphi XE5 for Win32

Introduction 9

Copyright © 2001-2025 Peganza

 Delphi XE5 for Win64
 Delphi XE5 for OSX
 Delphi XE5 for iOS Device
 Delphi XE5 for iOS Simulator
 Delphi XE5 for Android

 Delphi XE6 for Win32
 Delphi XE6 for Win64
 Delphi XE6 for OSX
 Delphi XE6 for iOS Device
 Delphi XE6 for iOS Simulator
 Delphi XE6 for Android

 Delphi XE7 for Win32
 Delphi XE7 for Win64
 Delphi XE7 for OSX
 Delphi XE7 for iOS Device
 Delphi XE7 for iOS Simulator
 Delphi XE7 for Android

 Delphi XE8 for Win32
 Delphi XE8 for Win64
 Delphi XE8 for OSX
 Delphi XE8 for iOS Device 32-bits
 Delphi XE8 for iOS Device 64-bits
 Delphi XE8 for iOS Simulator
 Delphi XE8 for Android

 Delphi 10 for Win32
 Delphi 10 for Win64
 Delphi 10 for OSX
 Delphi 10 for iOS Device 32-bits
 Delphi 10 for iOS Device 64-bits
 Delphi 10 for iOS Simulator
 Delphi 10 for Android

 Delphi 10.1 for Win32
 Delphi 10.1 for Win64
 Delphi 10.1 for OSX
 Delphi 10.1 for iOS Device 32-bits
 Delphi 10.1 for iOS Device 64-bits
 Delphi 10.1 for iOS Simulator
 Delphi 10.1 for Android

 Delphi 10.2 for Win32
 Delphi 10.2 for Win64
 Delphi 10.2 for OSX
 Delphi 10.2 for iOS Device 32-bits
 Delphi 10.2 for iOS Device 64-bits
 Delphi 10.2 for iOS Simulator
 Delphi 10.2 for Android
 Delphi 10.2 for Linux 64-bits

Pascal Analyzer10

Copyright © 2001-2025 Peganza

 Delphi 10.3 for Win32
 Delphi 10.3 for Win64
 Delphi 10.3 for OSX 32-bits
 Delphi 10.3 for OSX 64-bits
 Delphi 10.3 for iOS Device 32-bits
 Delphi 10.3 for iOS Device 64-bits
 Delphi 10.3 for iOS Simulator
 Delphi 10.3 for Android 32-bits
 Delphi 10.3 for Android 64-bits
 Delphi 10.3 for Linux 64-bits

 Delphi 10.4 for Win32
 Delphi 10.4 for Win64
 Delphi 10.4 for OSX 32-bits
 Delphi 10.4 for OSX 64-bits
 Delphi 10.4 for iOS Device 32-bits
 Delphi 10.4 for iOS Device 64-bits
 Delphi 10.4 for iOS Simulator
 Delphi 10.4 for Android 32-bits
 Delphi 10.4 for Android 64-bits
 Delphi 10.4 for Linux 64-bits

 Delphi 11 for Win32
 Delphi 11 for Win64
 Delphi 11 for OSX 32-bits
 Delphi 11 for OSX 64-bits
 Delphi 11 for iOS Device 32-bits
 Delphi 11 for iOS Device 64-bits
 Delphi 11 for iOS Simulator
 Delphi 11 for Android 32-bits
 Delphi 11 for Android 64-bits
 Delphi 11 for Linux 64-bits
 Delphi 11 for OSX ARM 64-bits

 Delphi 12 for Win32
 Delphi 12 for Win64
 Delphi 12 for OSX 32-bits
 Delphi 12 for OSX 64-bits
 Delphi 12 for iOS Device 32-bits
 Delphi 12 for iOS Device 64-bits
 Delphi 12 for iOS Simulator
 Delphi 12 for Android 32-bits
 Delphi 12 for Android 64-bits
 Delphi 12 for Linux 64-bits
 Delphi 12 for OSX ARM 64-bits

PAL parses your source code in the same way as the compiler. It builds large data tables
in memory and when the parsing is finished, produces an assortment of reports. These
reports hold plenty of useful information that can help you error-proof your applications.

Be forewarned that PAL occasionally needs a lot of memory (RAM). The amount of

Introduction 11

Copyright © 2001-2025 Peganza

memory needed is proportional to the number of code lines and modules in the examined
project.

In addition to common cross-reference reports, PAL produces reports that show which
units are used, which identifiers are unused and so on. It also calculates industry
standard metrics such as lines of code (LOC) and decision points (DP), and much more..

Projects

To analyze a particular set of source code with Pascal Analyzer, you must first create a
project. Do not confuse a Pascal Analyzer project with a Delphi project, they are
completely different things. The project holds the options for the analysis and lets you
conveniently use separate options for different sets of source code. Projects are saved as
text files with the extension “pap”, like for example a file with the name MyProj.pap. The
format of the files is equivalent to that of an INI file. It is possible to inspect and edit the
project files in a normal text editor, although not recommended.

Multi-projects

Multi-projects are essentially collections of Pascal Analyzer projects (see above). In a way
they are similar to Delphi project groups (*.bpg-files), in that they both reference other
projects. When a multi-project is run, the included projects are analyzed sequentially.
The reports that are generated contain mutual facts about these projects. Multi-projects
are saved as text files with the extension “pam”, like for example a file with the name
MyMProj.pam. The format of the files is equivalent to that of an INI file.

A subset of all reports and sections are generated for a multi-project:

Warnings Report

- Interfaced identifiers that are used, but not outside of unit
- Interfaced class identifiers that are public/published, but not used outside of unit

Optimization Report

- Virtual methods (procedures/functions) that are not overridden

Reduction Report

- Identifiers never used
- Functions called only as procedures (result ignored)
- Functions/procedures (methods excluded) only called once
- Methods only called once from other method of the same class

Uses Report

- Units used by the projects
- Units used by all projects
- Unit references

Pascal Analyzer12

Copyright © 2001-2025 Peganza

Special thanks to

- Borland, for giving us Delphi, the most productive programming environment ever
- Embarcadero/CodeGear, for continuing Borland's work
- Inno Setup (https://jrsoftware.org/isinfo.php), a great utility to create powerful
installation programs, we use it for all our applications

See also:

What's new in version 9?
What's new in version 8?
How to use PAL.EXE and PAL32.EXE
How to use PALCMD.EXE and PALCMD32.EXE
Known limitations
Command Line Options for PAL.EXE and PAL32.EXE
Main menu
Main window

__

Copyright © Peganza 2001-2025. All rights reserved. All product names are trademarks
or registered trademarks of their respective owners.

This documentation was last updated May 8, 2025.

Web site: https://peganza.com
Email: support@peganza.com

mailto:support@peganza.com

Known limitations 13

Copyright © 2001-2025 Peganza

2 Known limitations

There are situations that Pascal Analyzer currently cannot handle very well. Some of
these limitations, but certainly not all, are:

1. Objects that are created through a class reference cannot always be resolved. The
reason for this is that the actual class used is determined at runtime.

Example:

2. Methods that are marked as abstract in a base class and used in that class, cannot be
resolved:

Example:

Pascal Analyzer14

Copyright © 2001-2025 Peganza

The actual usage of Proc is determined at runtime.

3. Assert calls are not excluded from the parsing process, unlike in Delphi, regardless if
the $C- setting is active or not. This means that identifiers used in the Assert procedure
call, will be registered, and appear in the reports.

Example:

The parameter P will be registered and appear in the reports. When compiled by Delphi,
this code line will be stripped out if $C- is defined.

See also:

Introduction
How to use PAL.EXE
How to use PALCMD.EXE
Command Line Options for PAL.EXE
Main menu
Main window

What's new in version 9 (April 2017, updated May 2025)? 15

Copyright © 2001-2025 Peganza

3 What's new in version 9 (April 2017, updated May 2025)?

This article describes changes and new features in Pascal Analyzer version 9, compared
to the previous version 8. The new version has been enhanced with a lot of smaller and
greater features. As part of our continuing quality work, there are also numerous
optimizations and error fixes.

There are in this version one new report, and 23 new report sections. The total number
of sections is now 238. These sections are divided over 53 different reports.

Support for Delphi 10.2 Tokyo, Delphi 10.3 Rio, Delphi 10.4 Sydney, Delphi 11
Alexandria and Delphi 12 Athens added

Pascal Analyzer now also understands code for Delphi 10.2 Tokyo (released March 2017),
including the new Linux 64-bits compiler target. Also it supports Delphi 10.3.3 Rio
(released November 2019), and Delphi 10.4.2 Sydney (released February 2021), and
Delphi 11 (released September 2021, latest update 11.3 in February 2023), including the
new OSX ARM 64-bits compiler target. Plus the current Delphi 12 Athens major version.

New report: Clone Report (CLON)

This new report detects code clones. It compares subprograms within the same module
and across modules.
Use the results to refactor your code and eliminate duplicated code.

New section in Strong Warnings Report: "Index error" (STWA4)

This section reports locations in your code where index errors can occur. These are errors
where an array index with an invalid value is accessed. Some examples:

If the code had instead been written as "Arr[553]" (an explicit value), the compiler would
have halted on this line. But for a variable, it does not.

Pascal Analyzer16

Copyright © 2001-2025 Peganza

These kind of errors will give an exception at runtime, and should of course be avoided
as much as ever possible.

New section in Strong Warnings Report: "Possible bad pointer usage" (STWA5)

This section lists locations in your code where a pointer possibly is misused. It is for
example a pointer that has been set to nil and further down in the code is dereferenced.

Example:

What's new in version 9 (April 2017, updated May 2025)? 17

Copyright © 2001-2025 Peganza

New section in Strong Warnings Report: "Possible bad typecast (consider using
"as" for objects)" (STWA6)

This section lists locations in your code with a possibly bad typecast. These are typecasts
that casts into a type other than what the variable itself has. If you use the "as"
operator, an exception will instead be raised. Otherwise there may be access violations
and errors in a totally different code location, which is awfully hard to track down.

Pascal Analyzer18

Copyright © 2001-2025 Peganza

In the example above, the last line could better be written (although still faulty!) as

Monkey := Banana as TAnimal;

This should result in an exception. But it is still preferable; instead of letting the code
proceed resulting maybe in access violations later in a totally unrelated part of the code,
which is not fun to debug.

Added in 9.2:

New section in Strong Warnings Report: "For-loop with possible bad condition"
(STWA7)

This section lists locations in your code where for loop has any of these conditions:

What's new in version 9 (April 2017, updated May 2025)? 19

Copyright © 2001-2025 Peganza

Added in 9.2:

New section in Strong Warnings Report: "Bad parameter usage (same identifier
passed for different parameters)" (STWA8)

This section lists locations in your code where a call to a subprogram is made with bad
parameters. The situation occurs when the called subprogram has an "out" parameter
plus at least one another parameter. The identifier passed is used for both these
parameters. Because an "out"-parameter is cleared in the called subprogram this will
give unexpected results for reference-counted variables like strings and dynamic arrays.

Added in 9.2:

New section in Strong Warnings Report: "Generic interface has GUID" (STWA9)

This section lists generic interface types that declare a GUID:

Pascal Analyzer20

Copyright © 2001-2025 Peganza

.

The problem with this is that all generic types created from this interface, like
IMyInterface<Integer> and IMyInterface<string> will share the same GUID. This will
cause type casting to malfunction.

New section in Warnings Report: "Mixing interface variables and objects"
(WARN53)

This section reports locations in your code with assignments between objects and
interface variables. Normally, unless you really know what you are doing, it is a bad idea
to mix interfaces and objects. The reason is that the reference counting mechanism of
interfaces can be disturbed, leading to access violations and/or memory leaks.

New section in Warnings Report: "Set before passed as out parameter"
(WARN54)

This section reports locations in your code where a variable is set and then passed as an
"out" parameter to a function.

Because the "out" parameter will be set in the called function without being read first, it
is at least pointless to set it before it is passed. It may also indicate some

What's new in version 9 (April 2017, updated May 2025)? 21

Copyright © 2001-2025 Peganza

misunderstanding about the code.

Consequently it is recommended to check if it is meaningful to set the variable before
passing it. If not, remove the assignment, or else modify the signature of the called
function from "out" to "var".

See also our blog article about out parameters.

Example:

New section in Warnings Report: "Redeclares ancestor member" (WARN55)

This section lists class fields or methods that redeclare ancestor members with the same
name. This may lead to confusion about which member is referenced in a given situation.
The recommendation is to refrain from reusing the same name, because this will only
make your code harder to understand and maintain.

Example:

http://peganza.com/get-out-different-parameter-types.html

Pascal Analyzer22

Copyright © 2001-2025 Peganza

New section in Warnings Report: "Parameter to FreeAndNil is not an object"
(WARN56)

This section reports locations in your code where FreeAndNil takes a parameter which is
not an object, for example an interface variable. This may lead to access violations.
Unlike Free, the compiler will not complain at compile-time.

Example:

New section in Warnings Report: "Enumerated constant missing in case
structure" (WARN57)

This section lists locations in your code where a case statement does not list all possible
values of an enumerated type. This is probably most often as intended, but it may also
point out an error in the code.

Example:

What's new in version 9 (April 2017, updated May 2025)? 23

Copyright © 2001-2025 Peganza

In the code above, cpKing is missing from the case structure, and will trigger a warning.

If you want to suppress warnings for a case-structure where you know it is safe to
exclude one or more enumerated constants, just use the PALOFF feature on the same
line as the "case" keyword.

New section in Warnings Report: "Mixed operator precedence levels" (WARN58)

This section lists locations in your code where operators of different levels are mixed.
Operators are in Object Pascal evaluated from left to right, unless parentheses are used
to change the evaluation order. Operators of level 1 are evaluated before operators of
level 2 etc.

Those are the operator precedence levels, as used in the Object Pascal language:

Level 1: @, not
Level 2: *, /, div, mod, and, shl, shr, as
Level 3: +, -, or, xor
Level 4: =, <>, <, >, <=, >=, in, is

Example:

Mixing operators is perfectly valid but you will find that your code is clearer and easier to
understand if you insert parentheses. Then you do not have to think that much about

Pascal Analyzer24

Copyright © 2001-2025 Peganza

operator precedence.

New section in Warnings Report: "Explicit float comparison" (WARN59)

This section lists locations in your code where floating point numbers (variables,
constants, or explicit values) are directly compared. It is considered not secure to
compare floating numbers directly. Instead use functions in Delphi's System.Math unit,
like IsZero and SameValue.

Example:

In the example above, use instead SameValue function from System.Math unit.

Continuous parser and report improvements

Numerous bug fixes and minor improvements have been added in this major new
release. Often those fixes are for the parser and the evaluation of identifiers, like
improving handling of generics and overloads. Also when it comes to performance, many
parts of the program now execute even quicker than before.

Loading old PAL projects

When loading old (before version 9.x) projects, those now automatically select report
sections that are new in version 9.x. The older handling was to not automatically add
those new report sections. These had to be added manually.

Delphi project files (*.dproj) can now be loaded

These files can now directly be selected and loaded as the main file for a project. You can
also select a main project file (*.dpr), with the same effect as in version 8.x, which was
to implicitly also load the dproj file (when the setting "Use Delphi project options" was
activated).

http://docwiki.embarcadero.com/Libraries/Berlin/en/System.Math
http://docwiki.embarcadero.com/Libraries/Berlin/en/System.Math.IsZero
http://docwiki.embarcadero.com/Libraries/Berlin/en/System.Math.SameValue

What's new in version 9 (April 2017, updated May 2025)? 25

Copyright © 2001-2025 Peganza

New command line parameter for PAL.EXE

You can now use an optional second parameter /AUTO in PAL.EXE (first parameter must
as before give the path to the project) to automatically analyze the loaded project and
then terminate the application. This parameter makes it easier to schedule (with
Windows' Task Scheduler) analyses where PAL is automatically started and stopped.

Example of a command line:

PAL.EXE C:\proj\MyProj.pap /AUTO

Another option is of course to use the command line program PALCMD.EXE for these
tasks.

Integration with Lattix

For the Uses Report, an additional file Lattix.xml is created in the report directory. You
can use it to integrate with Lattix products.

New Defaults button when selecting report sections

When selecting report sections, there is a new button "Defaults". It selects the default
sections when clicked. This is very convenient, for example when you have temporarily
removed some sections, and want to reselect only the default ones.

Modified licensing model

Starting with this major version 9, Pascal Analyzer now uses a subscription based
licensing model. Each license now includes a full year of updates and new releases. After
that period, additional support plan periods can be bought. See the orders page at our
web site for more details.

Added in 9.1:

New section in Warnings Report: "Condition evaluates to constant value"
(WARN60)

This section lists locations in your code where a condition evaluates to a constant value.

Example:

https://lattix.com/products

Pascal Analyzer26

Copyright © 2001-2025 Peganza

Added in 9.2:

New section in Warnings Report: Assigned to itself (WARN61)

This section lists locations in your code where a variable has been assigned to itself.
Even if this assignment is harmless, it makes no sense. It may indicate other problems
with the code, so you should check the surrounding code.

Added in 9.3:

New section in Warnings Report: Possible orphan event handler (WARN62)

This section lists class procedures in your code that look like event handlers. But they are
not connected to any control in the corresponding DFM-file.

New section in Code Reduction Report: "Consider using interface type"
(REDU18)

This list contains objects which can be declared and implemented as an interface type,
instead of as the class type implementing the interface. One major advantage is that
interface reference counting can be used, so you will not have to explicitly free the object
yourself.

What's new in version 9 (April 2017, updated May 2025)? 27

Copyright © 2001-2025 Peganza

In the code example above, consider instead declaring "Obj : IIntf" instead.

New section in Code Reduction Report: "Redundant parentheses" (REDU19)

This section lists locations in your code where superfluous parentheses can be removed,
simplifying the code and making it easier to read.

New section in Code Reduction Report: "Common subexpression, consider
elimination" (REDU20)

This section lists locations in your code with repeated common subexpressions. Those
may be candidates to put into temporary variables in order to simplify and optimize the
code.

Example:

Pascal Analyzer28

Copyright © 2001-2025 Peganza

In the code example above, consider putting the result of the expression "A+B+C" into a
local temporary integer variable, If this really gives faster execution depends on how the
compiler generates the machine code. But at least your code may become easier to read
and understand.

If any of the variables involved in the repeated expressions would have been modified,
between the locations, there should not be any warning.

New section in Code Reduction Report: "Default parameter values that can be
omitted" (REDU21)

This list contains calls to functions or procedures that use default parameters, and where
the parameter can be omitted at the call site. The reason is then that the value of the
parameter passed is the same as the default parameter value. Removing the unneeded
parameter value will make the code shorter and easier to read.

Example:

In the code example above, the call to ProcWithDefaultParam does not need to include
the parameter P, because P is assured to have the value "nil".

New section in Code Reduction Report: "Inconsistent conditions" (REDU22)

This section reports locations with inconsistent conditions. These are places where a
condition check is repeated, even if the outcome will be the same as in the previous
location.

What's new in version 9 (April 2017, updated May 2025)? 29

Copyright © 2001-2025 Peganza

Example:

In the code example above, the expression "I = 1" has already been evaluated higher up
in the code. Thus, the code is not optimal and needs work.

New section in Code Reduction Report: "Typecasts that possibly can be omitted"
(REDU23)

This section reports locations with typecasts that possibly can be omitted. It is locations
where the typecast casts the variable to the same type that it already has.

Example:

Added in 9.2:

New section in Code Reduction Report: "Local identifiers never used" (REDU24)

This section reports local identifiers that are declared but not used.

Added in 9.2:

New section in Optimization Report: "Inlined subprograms not inlined because
not yet implemented" (OPTI9)

Pascal Analyzer30

Copyright © 2001-2025 Peganza

This section lists calls to inlined subprograms, where the subprogram will not be inlined.
The reason is that the subprogram has not been implemented yet. It is implemented
further down in the same module. There are a number of other conditions that also must
be fulfilled for the subprogram to be inlined. But this one must always be fulfilled.

What's new in version 9 (April 2017, updated May 2025)? 31

Copyright © 2001-2025 Peganza

The solution is simple: If possible move the inlined subprogram further up in the code, so
the compiler reaches it before the places where it is called.

Added in 9.8:

New section in Optimization Report: "Managed local variable that can be
declared inline" (OPTI10)

This section reports local variables that can benefit from being declared inline instead of
in the main var-section.

Added in 9.9:

New section in Optimization Report: "Managed local variable is inlined in loop"
(OPTI11)

This section reports local managed variables that are declared inside a loop, which can
decrease performance.

New section in Convention Compliance Report: "Class fields that are not
declared in the private/protected sections" (CONV22)

This is a list of all class fields that are not declared in the private/protected sections of a
class.
Fields should normally not be made "public". They should instead be accessed through
properties

Added in 9.10:

New section in Warnings: "Mismatch parameter value (32/64-bits)" (WARN63)

This section reports locations where 32-bits variables are passed as 64-bits parameters
(or vice versa).

Added in 9.11:

New sections in Convention Compliance Report:

"Class fields that do not start with 'F'" (CONV23)

This section lists class fields with a name not starting with "F". It complements the
CONV6 report section which only lists fields exposed as properties.

"Value parameters that do not start with selected prefix" (CONV24)

This section lists value parameters that do not start with selected prefix.

Pascal Analyzer32

Copyright © 2001-2025 Peganza

"Const parameters that do not start with selected prefix" (CONV25)

This section lists const parameters that do not start with selected prefix.

"Out parameters that do not start with selected prefix" (CONV26)

This section lists out parameters that do not start with selected prefix.

"Var parameters that do not start with selected prefix" (CONV27)

This section lists var parameters that do not start with selected prefix.

"Old-style function result" (CONV28)

This section lists functions where instead of "Result", the function name is used as the
result variable.

"With statements" (CONV29)

This section lists locations where "with" is used.

"Private can be changed to strict private" (CONV30)

This section lists class members that can be strict private instead of private.

"Protected can be changed to strict protected" (CONV31)

This section lists class members that can be strict protected instead of protected.

New section in Identifiers Report:

"Inlined variables and constants" (IDEN4)

This section lists variables and constants that are declared inline.

Added in 9.12.2:

New section in Strong Warnings: "Interface lacks GUID" (STWA10)

This section reports interface types without a GUID.

Relative paths

Now relative paths for folders can be specified. This applies to the main file folder, output
folder, searched folders, excluded report folders and excluded search folders. The relative
path should be relative to the folder where the project file (PAP-file) is located.

In the dialog where paths are selected, just write the relative path manually and add it to
the selected folders.

What's new in version 9 (April 2017, updated May 2025)? 33

Copyright © 2001-2025 Peganza

Added in 9.13.0:

New option for Class Index Report: "Sorted members"

If selected, members will be listed alphabetically (the behaviour until now), otherwise in
source code order (Default = True)

New reference report "Subprogram Parameters Report"

The new "Subprogram Parameters Report" lists the parameters for all subprograms.

Added in 9.14.0:

New section in the "Strong Warnings Report"

The new section (STWA11) has the caption "Duplicated GUID". It reports locations where
the same GUID exists in several code locations.

New option for Clone Report: "Min DP"

This setting specifies the minimum DP (decision points) for a subprogram to be
considered in the clone report. Default = 1

New section in the "Strong Warnings Report"

The new section (STWA12) has the caption "Equal if-then and if-else statements". This
section reports if-structure with identical then- and else-statements.

New section in the "Memory Report"

The new section (MEMO8) has the caption "Created and freed objects". It reports
locations where objects are created and freed.

Added in 9.15.0:

New section in the "Convention Compliance Report"

The new section (CONV32) has the caption "Multiple statements on the same line". It
reports locations with more than one statement on the same line.

New command line parameter for PALCMD.exe:

The new parameter /XF allows you to specify source files that should be excluded from

Pascal Analyzer34

Copyright © 2001-2025 Peganza

parsing and analyzing.

New palwiz18_x64.dll

It is now possible to jump to the new Delphi 12.3 64-bits IDE. Activate the setting in the
Preferences dialog.
If both the Delphi 12 32-bits and 64-bits IDE are open, both will display the source code
line, but focus will be transferred to the 64-bits instance.

Added in 9.16.0:

New command line parameters for PALCMD.exe:

Parameter /LB, if /L is used, means that only "bad" limit results will be output. These are
results that are worse than the limit.
Parameter /LG, if /L is used, means that only "good" limit results will be output. These
are results that are better than the limit.

These parameters cannot both be set on the command line.

New section in the "Uses Report"

The new section (USES9) has the caption "Optimal uses list per module". It is similar to
USES5-"Optimal uses list" but presents uses lists per module.
This makes it easy to copy-and-paste from the report to code.

See also:

What's new in version 8?
What's new in version 7?
What's new in version 6?
What's new in version 5?
What's new in version 4?

Introduction

What's new in version 8 (May 2016)? 35

Copyright © 2001-2025 Peganza

4 What's new in version 8 (May 2016)?

This text describes changes and new features in Pascal Analyzer version 8, compared to
version 7.x. The new version has been enhanced with a lot of smaller and greater
features.

Support for Delphi 10.1 Berlin
Pascal Analyzer now also supports all targets for Delphi 10.1 (released April 2016).

Support for Delphi XE8 and Delphi 10 Seattle
Pascal Analyzer now also supports all targets for Delphi XE8 (released April 2015),
including the new iOS 64-bits compiler.

It also supports all targets for Delphi 10 Seattle (released August 2015)

Improved Unicode-awareness
Reports will now be written in Unicode (UTF-8). This means that if you for example use
Russian letters in your source code, these will show up correctly in the reports.

New 64-bit version
Pascal Analyzer is in this version available in both 64-bits and 32-bits. The new 64-bits
version is in PAL.EXE and PALCMD.EXE. The 32-bits version is in PAL32.EXE and
PALCMD32.EXE.

The 64-bits version is installed (as default) under "C:\Program Files\Peganza\Pascal
Analyzer 8". The 32-bits version will be located in the sub-folder "PAL32".

However, if you install on a 32-bits system, only the 32-bit version will be installed (as
default in the folder "C:\Program Files (x86)\Peganza\Pascal Analyzer 8").

The 64-bits version is faster, but consumes more memory. Nevertheless, if you are on a
64-bits computer (which you must probably are), your first-hand choice should be to use
the 64-bits version.

Built-in multi-tab-page editor
Optionally you can now edit source files within Pascal Analyzer. We have added a
full-featured editor that lets you conveniently edit source files. Use this editor for small
changes without leaving the Pascal Analyzer environment. Optionally you can also mimic
the way backup files are copied to the "_history" folder.

To invoke the editor, just double-click on an identifier in a report. The editor window will
then be displayed, the source file loaded and the cursor positioned on the relevant line.

The editor has got many of the expected features, like undo-redo capability, syntax
highlighting, and so on.

Pascal Analyzer36

Copyright © 2001-2025 Peganza

Editor window in Pascal Analyzer

There are also navigation features in the source code editor. You can navigate between
references (reads and sets etc) for the selected object, quickly go to declaration or
implementation for a selected method, etc.

For example, right-click on an identifier in the source code, and display a menu of
locations where the identifier is referenced:

Local menu with references for the selected identifier

Then click a menu item to navigate to the reference location.

For advanced development work, our recommendation is that you should continue using
the powerful RAD Studio IDE from Embarcadero as your main editing environment.

But the editor in PAL will come in handy when navigating your source code and making
minor modifications.

Reports displayed in multi-tab-pages
Each report will now as default be displayed in a separate tab page viewer. It is then
easy to switch between different reports. It is possible to revert to the pre-PAL8 action,
which was to show reports in a single viewer.

What's new in version 8 (May 2016)? 37

Copyright © 2001-2025 Peganza

Start viewing reports, as soon as they are ready
In this version, reports are available for viewing as soon as they are ready. You do not
have to wait till all reports are produced. As soon as a report is ready, its corresponding
entry in the tree will be enabled. This is because reports are produced in a special thread.

Parse less code, still produce full reports
You can now choose to skip parsing implementation sections for units that are not
reported. This is the default option, but you can still revert to the pre-PAL8 action, which
was to also parse those parts. The results will be the same, except for the Uses Report,
which will be more complete if you choose to also skip non-reported implementation
sections.

Record fields also tracked
Now also individual record fields are tracked, that means they are registered whenever
referenced (read or set for example). The reports will include information about these
fields.

Improved performance
Performance is now increased quite a lot, both for parsing and building reports. This
version is about 30-50% faster than version 7.x (your mileage may vary). Memory
consumption has also been drastically reduced.

Improved quality
We have done a lot of work in this release, to avoid displaying false warnings. The
internal workings of PAL have been refactored and enhanced in many ways. However,
PAL can sometimes not fully resolve object references. Objects may be created through a
class reference, and then it is not possible for a static code analyzer to know which
objects that are in fact created at runtime.

New Description property for projects
You can now optionally associate a descriptive text or comment to a project definition. As
other parts of PAL, it also supports Unicode.

New Start page
There is a new start page with online content from Peganza's blog. There is a setting in
the preferences dialog, to turn on/off this feature.

New section in Warnings Report
There is a new section "Possible bad assignment". It lists assignments to bigger
variables, where data loss is possible.

New section in Code Reduction Report
There is a new section "Fields only used in single method". It lists fields that probably
instead could be declared as local variables.

Pascal Analyzer38

Copyright © 2001-2025 Peganza

New section in Optimization Report
"Local subprogs", displays a list of nested (local) subprograms. Normally performance is
better if you avoid nesting, mainly because the compiler can do a better job using
available processor registers instead of the stack.

New columns in Modules Report
The three new columns display the encoding for a source code file (like "UTF-8" etc), and
also shows if it has "initialization" or "finalization" sections.

See also:

What's new in version 9?
What's new in version 7?
What's new in version 6?
What's new in version 5?
What's new in version 4?

Introduction

What's new in version 7 (November 2013)? 39

Copyright © 2001-2025 Peganza

5 What's new in version 7 (November 2013)?

This text describes changes and new features in Pascal Analyzer version 7, compared to
version 6. The new version has been enhanced with a lot of smaller and greater
features.

Support for Delphi XE5, XE6 and XE7
This version adds support for Delphi XE5, XE6 and XE7 (all compiler targets including
iPhone and Android mobile devices). Double-clicking on a report line in Pascal Analyzer
will optionally jump to the correct location in the Delphi IDE.

Generate CHM files
It is now possible to also generate a CHM file for the collection of HTML pages that are
output. The CHM file is compressed, and features full-text search.

Reports in CHM-file

Mouse wheel support
Use Ctrl+MouseWheel in reports and in the source viewer to temporarily
increase/decrease font size.

Pascal Analyzer40

Copyright © 2001-2025 Peganza

Excluded files
This setting as default used to specify "Windows.pas;System.pas". But in this version it is
changed to "System.pas". This means that Windows.pas will also be parsed, if found by
PAL. The analysis will take a bit longer to run, but the results will be more accurate and
complete.

Status Report
The Status Report now, as last section, lists all files that have been found and loaded.
Use the list to check if PAL has found all the expected files.

New pane on status bar
The status bar at bottom of the main window has got a new section, telling the compiler
target for the currently loaded project.
Like "Delphi XE5 (Win32)" for example. It also shows a representative glyph for the
selected Delphi version.

Redeclared identifiers
There is a new section in the Warnings Report that lists redeclared identifiers from the
System unit. Although allowed, this is a source for confusion when maintaining the code.

Identifier with same name as keyword/directive
This is a new section in the Warnings Report that lists identifiers that have the same
name as keyword/directive.

Different string types in Totals and Module Totals Report
These two reports now also lists the number of different types of strings, like
UnicodeString and WideString.

Misc. bug fixed
Some small bugs, both in the parser and report builder have been fixed.

Predefined identifiers from System unit
Identifiers from System unit are preloaded by PAL. This feature has been totally
reworked, resulting in much more accurate results.

Improved handling of safe calls
Calls to functions that don't not require the passed variable to be initialized, like
SizeOf(), are better detected in this version, leading to more accurate results.

New NextGen Readiness Report
This new report measures how well prepared your code is for the new NextGen compiler.

What's new in version 7 (November 2013)? 41

Copyright © 2001-2025 Peganza

New section in Strong Warnings Report
This new section reports subprograms that unconditionally call themselves recursively.

Totals for reports
In the report list, total hit numbers (if activated) are also displayed for report groups and
as a grand total for all reports. This makes it easier to spot the difference between two
separate runs.

See also:

What's new in version 9?
What's new in version 8?
What's new in version 6?
What's new in version 5?
What's new in version 4?

Introduction

Pascal Analyzer42

Copyright © 2001-2025 Peganza

6 What's new in version 6 (August 2011)?

This text describes changes and new features in Pascal Analyzer version 6, compared to
version 5. The new version has been enhanced with a lot of smaller and greater features.
Together they make this upgrade one of the most important in the history of Pascal
Analyzer. There is now a total of 51 reports, with 197 report sections. Also there are four
special multi-reports.

Support for Delphi XE2, XE3 and XE4
From version 6.1, PAL also supports Delphi XE2 (Win32, Win64 and OSX targets).
Support for Delphi XE3 (Win32, Win64 and OSX targets) was added in version 6.2.
Delphi XE4 (Win32, Win64, OSX, iOS) support was added in version 6.3.

Relative path for main file
For the main file that is analyzed, it is now possible to use relative paths. The path is
entered relative to the location of the project file itself.
So, for example, if the project file is C:\PALProjects\MyProject.pap, and the main file is
entered as "MyApp.dpr", PAL will look for this file in the folder C:\PALProjects. Likewise, if
the main file is entered as "..\Dir\MyApp.dpr", PAL will look for the file in the C:\Dir
folder.

This feature is very convenient if you share PAL projects between more than one
computer. Instead of specifying a main file path as "C:\Projects\MyApp.dpr", and get
problems when running on another computer that has the location
"D:\Projects\MyApp.dpr", you can now specify "MyApp.dpr" which will work on both
computers.

New Help Report
The new Help Report checks help topics for the analyzed project's help system. Help
topics are normally defined as numbers in an external *.h-file. These values correspond
to values of the HelpContext property. The first report section presents a list of all
HelpContext values found in DFM files. Following two sections report topics that are
either missing in the *.h-file, and HelpContext values that are missing in the DFM files.

New Searched Strings Report
The new Searched Strings Report searches for strings in the project's source code files.
For each search string it reports files where the strings exists, and files where they not
exist. Use the report for example to verify that your source code files include a copyright
notice, or common include files.

New Map File Report
The new Map File Report displays information about modules that are linked into the
binary executable (EXE, DLL). It generates this information from the MAP file that can be
generated for your Delphi project when compiling the source code.

What's new in version 6 (August 2011)? 43

Copyright © 2001-2025 Peganza

Improvements in Third-Party Report
In the Third-party dependencies Report, the sort mode now has importance. The sort
mode is set on the General tab page for the project options. The lists are displayed in
module-identifier or identifier-module order.

Check for local variables that are referenced before being created
There is a new section in the Memory Report that reports local variables (objects) that
are referenced before they are created. This is an error that in most cases will result in a
runtime error.

Check for local variables that are referenced after being freed
There is a new section in the Memory Report that reports local variables (objects) that
are freed, but referenced further down in the code. This is an error that in most cases will
result in a runtime error.

Duplicate lines
This new section in the Warnings Report gives warnings for source code lines that are
duplicated, which means that two identical lines occur right after each other. This could
be a mistake in the code.

Check for local variables that are set but not read further down in the code
This is a new section in the Warnings Report that reports variables that are set, but
never referenced further down in the code. It indicates some programming mistake.

Improvements in Warnings Report - Local variables that are referenced before they are set
This section in the Warnings Report has been improved. References of a variable with
"SizeOf(Var)" are considered safe, and do not render an unnecessary warning.

Improvements in Warnings Report - Function result not set
This section in the Warnings Report has been improved. The detection of functions where
the result has not been set, is now much more accurate.

New section in Warnings Report - Duplicate class types in except-block
This section in the Warnings Report checks if the same class type has been used more
than once in an except-block, in an on-statement. It indicates some programming error.

Default report sections
Some sections in the Warnings Report, are in this version removed from the default
selection of included report sections. These are the sections where the results are not
certain, and where the results often are false positives. It is the sections that contain
"possibly" in the name.

Improvements in Complexity Report - Complexity per module/subprogram
This section in the Complexity Report has been extended with a part listing all modules.

Pascal Analyzer44

Copyright © 2001-2025 Peganza

Furthermore, the items displayed in the report can be listed in order according to LOC,
Lines, etc. This is of great value for example when finding out which modules or functions
that are most complex.

Improvements in Literal Strings Report
The Literal Strings Report now supports sorting of the strings. The sorting done depends
on the sort mode setting in Options|Properties - General, so either the sorting will be
according to module or according to the string itself.

Improvements for multi projects
All reports for multi projects have been improved. The reports now only display
identifiers that are used in more than one of the analyzed projects.

New menu to check for newer version
There is a new menu command under Help, that lets PAL check if there is a newer
version available. If you do not activate the option to let PAL automatically check for
newer versions on startup, this is a way of doing it manually.

Close button for source viewer window
There is a new button available when the source viewer window is open. With this button
you can close the window.

Customize "subprogram" string
Some of our users want to use another string than "subprogram" in the report headers. It
is now possible to select another string, for example "function" or "subroutine".

New switch /D for PALCMD
This new switch lets you specify conditional defines for PALCMD, the command-line
version of PAL. If present, they will override the setting in project options.

New switch /X for PALCMD
This new switch lets you specify excluded search folders for PALCMD. If present, they will
override the setting in project options.

Improvements in Status Report
The Status Report now also displays total time for each report, not only parsing and
report building time. It also reports user-defined environment variables, if they are
found, and their translation. For example, if you have defined an environment variable
"$(THIRD)", it will be displayed together with its translation "C:\3RDPARTY".

Show implementation line numbers
A new option determines if the line number where a subprogram is declared is displayed
in the reports. If set to Yes, instead implementation line number is displayed. This has
meaning if you double-click on the line to jump to the source code. Either it will then

What's new in version 6 (August 2011)? 45

Copyright © 2001-2025 Peganza

take you to the declaration or the implementation line. Often you would probably prefer
to reach the implementation. In previous versions of PAL, the line number displayed was
always for the declaration line.

Improved documentation
The help texts have been improved and extended. For example, report codes, like
"WARN12" are now displayed for each report section. These codes can be used when
running PALCMD.EXE.

Also, check out the FAQ page at our web site. It will give answers to many common
questions.

See also:

What's new in version 9?
What's new in version 8?
What's new in version 7?
What's new in version 5?
What's new in version 4?

Introduction

Pascal Analyzer46

Copyright © 2001-2025 Peganza

7 What's new in version 5 (May 2010)?

This section describes changes and new features in Pascal Analyzer version 5, compared
to version 4.

Build reports in multiple threads
Take advantage of the new generations of multi-core processors, and generate reports
quicker by using multiple threads. Of course your result will depend on your particular
hardware. Greater number of processors and cores means faster reports.

There is a new option to set the number of threads that should be used when creating
reports. For a dual-core processor, this means that two threads is probably a suitable
choice. This is also the default value. Because your mileage may vary, you should
probably experiment with this setting to find optimal number of threads for a particular
project and hardware.

Suppress reporting by source line
It is now possible to let PAL skip reporting, for selected source code lines. This is
convenient, to avoid the false positives that PAL sometimes outputs. Remember, that
unlike the compiler, PAL does not always have access to the complete source code,
making it hard to resolve all references correctly.

By adding a special comment, like for example:

//PALOFF

.. at the end of a source code line, means that PAL will not report any issues found on
that particular line. Also, if you put the comment on a line where an identifier is declared,
that identifier will not be reported. This is the most effective way to get rid of all issues
for a particular identifier.

It is possible to select what string should be used as the marker. Default value for the
suppression marker is "PALOFF", but you can change this to something else. Blank
spaces between "//" and the suppression marker are allowed. You can also have more
comment text to the right of the marker, like:

//PALOFF because false warning otherwise

New Exception Report
You could think that the 40+ reports already available cover most demands. But one
area that has not been touched in previous versions is exceptions.
This new report produces two sections dealing with exceptions:

- Exception Call Tree
This section is similar to the Reverse Call Tree Report, but it adds information about how
exceptions are handled.

- Raised exceptions
This section lists which exceptions that are explicitly raised in the source code (with the
keyword "raise").

What's new in version 5 (May 2010)? 47

Copyright © 2001-2025 Peganza

New Similarity Report
This new report produces listings of identifiers that have similar names. It does so by
using the well-known soundex algorithm. You may use this report to determine how close
your identifiers are by name.

New Module Totals Report
This new report produces similar results as the Totals Report, but divided for each
module (unit).

New section in Duplicate Identifiers Report
This new section also lists duplicate identifiers, but only those in overlapping scope.
These identifiers are most likely to cause problems, if they are confused with each other.

Command line options for PALCMD.EXE
There is a whole new bunch of command line options for PALCMD, which will override
settings from PAL.INI:

/F specifies the report format (text, HTML, XML)

/S specifies a semicolon-delimited list of search folders, like /S="C:\CODE1;C:\My Code"

/T specifies the number of report threads to use

/L specifies the path to a text file with limit info

This last option demands a more detailed explanation: You can now use a text file with
limit information, which determine the maximum values for sections in reports.

For example, if the file contains just this line:

WARN1=5

.. "WARN1" is the code for the section "'Interfaced identifiers that are used, but not
outside of unit" in the Warnings Report.

If then the number of warnings in a particular run of PALCMD.EXE exceeds 5,
PALCMD.EXE will write out an error, and halt with an exit code of 99, and with an error
message. You can use this when integrating PAL with your build process, to stop it when
any unexpected results occur.

Speed improvements
There are a number of improvements in the parser, allowing for faster parsing of source
code. For example, include files are now cached, so that their content does not need to
be read from disk repeatedly.

The building of reports is now much faster, due to a more efficient handling of the data
structures generated during parsing, and to the new ability to build reports in threads.

Pascal Analyzer48

Copyright © 2001-2025 Peganza

These speed improvements are equally available both in the GUI program PAL.EXE and
the command-line program PALCMD.EXE

Check for new versions
There is now an option in the settings dialog that will let PAL inform when new versions
are available at our web site.

Project options dialog
There is now a hint window displayed when hovering over reports on the Reports tab
page. This will help you to get an indication what the report does. Also, the organization
and overall design of this dialog has been improved

Suggest main file folder for project file
Normally, PAL will suggest saving a file in the folder that is defined as the project folder.
But you can now select an option, that lets PAL suggest the same folder as the folder in
which the main file for the project is located. This is desirable if you want to keep PAL's
project file together with the source code it analyses.

Report tree
It is now possible to select the font and background color for the report tree.

See also:

What's new in version 9?
What's new in version 8?
What's new in version 7?
What's new in version 6?
What's new in version 4?

Introduction

What's new in version 4 (October 2006)? 49

Copyright © 2001-2025 Peganza

8 What's new in version 4 (October 2006)?

This section describes changes and new features in Pascal Analyzer version 4, compared
to version 3.

Support for Delphi 2007, Delphi 2009 (Win32), and Delphi 2010 (Win32)
PAL also supports the latest Delphi versions, 2007, 2009 and 2010.

Excluded folders and files
There are new settings for excluded folders and excluded files in the Properties dialog for
a project. By using these settings you can tell PAL which files to skip when parsing your
source code.

HTML help
Pascal Analyzer now uses HTML help. The help texts are loaded from the PAL.CHM file.

Folders
The folder for project files is now as default "C:\Documents and Settings\<acc>\My
Documents\Pascal Analyzer\Projects".

Section and report counters
In the report tree, many report sections show the number of reported items. From this
version the old (previous) numbers could also be displayed, for comparison purposes. For
example, this is a caption from the Optimization Report.

“(3) Virtual methods (procedures/functions) that are not overridden (was 5)”

The first number in parenthesis (3) shows the current number of warnings for this
section. The second number (5) shows the number of warnings that were generated the
last time this project was analyzed. For reports that have not yet been run, the text
“unknown” will be displayed, instead of a number.

It is possible to define masks for how the captions are displayed in reports and sections
both when section counters are used and when they are not. In this way you can choose
to display the caption in a customizable format, like

“Virtual methods (procedures/functions) that are not overridden (now 3, was 5)”

You can also customize colors for captions in the report tree. For example, an item with a
growing number of warnings, can be displayed in red colors if you so like.

Separate threads for parsing and reporting
Parsing and reporting is now done by a separate working thread. This gives a more
responsive user interface even during this process.

Pascal Analyzer 4 is also much quicker than its predecessor. It typically parses and

Pascal Analyzer50

Copyright © 2001-2025 Peganza

generates reports about 25% faster.

New Strong Warnings Report
The Strong Warnings Report displays severe warnings. Those warnings points to errors in
the source code that may lead to runtime failure of your product. The section “Property
Access in read/write methods” reports methods where properties are accessed directly,
causing infinite recursion.

The section “Ambiguous unit references” lists identifiers and locations with ambiguous
references. This are locations with a reference to an identifier that is exposed by two or
more used units. The compiler will search the uses list backwards for a suitable unit,
which makes this very unstable and prone for mistakes.

New Directives Report
The new Directives Report displays information about directives. There are five sections:

- Identifiers marked with the “deprecated” directive
- Identifiers marked with the “experimental” directive
- Identifiers marked with the “library” directive
- Identifiers marked with the “platform” directive
- Identifiers marked with the “inline” directive

New To-Do Report
The new To-Do Report displays the to-do items that are entered in the special dialog box
in the Delphi IDE, or inserted directly into the source code..

New Module Call Tree Report
The new Module Call Tree Report displays a hierarchical module call tree.

New sections in the Code Reduction Report
These sections are new in the Code Reduction Report:

- Unneeded boolean comparisons
- Boolean assignment can be shortened

New sections in the Convention Compliance Report
These sections are new in the Convention Compliance Report:
- Hard to read identifier names
- Label usage
- Bad class visibility order
- Identifiers with numerals
- Class/member name collision

New sections in the Warnings Report
These sections are new in the Warnings Report:
- Local for-loop variables read after loop

What's new in version 4 (October 2006)? 51

Copyright © 2001-2025 Peganza

- Local for-loop variables possibly read after loop
- For-loop variables not used in loop
- Non-public constructors/destructors
- Functions called as procedures
- Mismatch property read/write specifiers

New section in the Memory Report
This section is new in the Memory Report:

The new section “Unbalanced Create/Free” reports object instances that are not created
and freed the same number of times.

New section in the Uses Report
This new section in the Uses Report reports “Mutual unit references”, where two units
reference each other.

New section in the Control Warnings Report
This new section in the Control Warnings Report reports controls with an assigned Hint
property, where both ShowHint and ParentShowHint are “false”.

New section in the Uses Report for multiprojects
There is a new section in the Uses Report that for each unit reports which projects that
reference it.

See also:

What's new in version 9?
What's new in version 8?
What's new in version 7?
What's new in version 6?
What's new in version 5?

Introduction

Pascal Analyzer52

Copyright © 2001-2025 Peganza

9 Command-Line Options for PAL.EXE and PAL32.EXE

There are currently two types of parameters that you optionally can use on the command
line:

Path
Always as the first parameter, this is a complete path to the project you want PAL to
open at start-up. Normally PAL loads the last used project, so this is a way to override
that behaviour.

Example:

PAL c:\project\MyProj.pap

PAL will open the project file MyProj.pap at start-up.

/AUTO
Always as the second parameter, use /AUTO to indicate that PAL should run the project
indicated by the first parameter and then terminate itself. In this way it it possible to use
for example Window's Task Scheduler to run PAL.EXE automatically.

See also:

How to use PAL.EXE and PAL32.EXE
How to use PALCMD.EXE and PALCMD32.EXE
Introduction
Known limitations
Main menu
Main window

How to use PAL.EXE and PAL32.EXE 53

Copyright © 2001-2025 Peganza

10 How to use PAL.EXE and PAL32.EXE

Activation

When starting PAL for the first time, your license must be activated through the Internet.
If you are running PAL on a computer that has not got access to the Internet, you can
create an activation XML file and send to us. You will then receive a response XML file
that you use to manually activate.

For the activation, use the registration key that was sent to you by mail when buying the
product license. This key is good for a small number of activations. Contact us if you run
out of activations, for example when reinstalling on a new computer. You are entitled to
install Pascal Analyzer on up to four computers, as long as you are the Pascal Analyzer
user on those computers. If more than one developer needs Pascal Analyzer, additional
licenses must be bought.

If you need to move the installation to another computer, you can deactivate the license
on the current computer. Then you will be able to activate the license on the new
computer. Use the menu command "Deactivate License" in the About-menu for this.

Summary

PAL is an easy-to-use standalone Windows program. Just create a new project and select
a source file to analyze. Either select a complete Delphi project (DPR-file), Delphi
package (DPK-file) or a single source file (PAS-file), set a few options and start the
analysis. PAL presents the results either as plain text in a text viewer or in a HTML
browser (as HTML or XML). All reports are written to text (*.txt), HTML files (*.htm) or
XML files (*.xml) for later retrieval, maybe in another tool or editor.

You do not have to alter your code in order to examine it with PAL. PAL does not either
change or affect your code in any way.

Follow this simple procedure to create reports in PAL:

1. Create a new PAL project. Then select a main file to analyze, either a complete Delphi
project or a single source file. You can also open an existing PAL project.

2. Make sure that the selected compiler target is suitable for the source code. Enter other
options that are required, like which main file to analyze.

3. Press the Run button and wait from a few seconds till several minutes, depending on
the size of the code and the number of reports selected.

4. Examine the reports with the built-in text viewer or HTML browser.

In order to make your source code possible to analyze with PAL, you should make certain
that only one statement exists for every source line, like

procedure Proc;

Pascal Analyzer54

Copyright © 2001-2025 Peganza

var
I : integer;

begin
..
I := 5;
CallProc(I);
..

end;

..and not like

procedure Proc;
var
I : integer;

begin
..
I := 5; CallProc(I);
..

end;

Avoid the latter case, because PAL cannot decide if the identifier "I" is set or referenced
first. It is also considered better coding to only keep one statement on each line.

PAL is not a Delphi IDE plug-in (expert or wizard). It is a standalone program. You can
however install the application in the Delphi IDE, allowing easy access from within the
Delphi development environment. If you want to try a Delphi IDE plug-in, check out our
Pascal Expert product. It contains some of the capabilities of Pascal Analyzer, available
while you are developing.

To install PAL in the Delphi IDE, follow these simple steps:

1. Start Delphi and select Tools|Configure Tools
2. In the dialog box, press the Add button
3. Fill the fields, for example with these values:

Title: Pascal Analyzer
Program
:

C:\Program Files\Peganza\Pascal Analyzer 9\PAL.exe

Working
dir:

C:\Program Files\Peganza\Pascal Analyzer 9

Diagnosis program

There is also a special diagnosis and debug program:

PAL.DEBUG.EXE (64-bits) and PAL32.DEBUG.EXE (32-bits).

You can use this to generate debug information that you can send to us. Especially if you
get an exception during parsing or building reports.
Just start the program, and then in the dialog, select a log folder and up to three source
files to generate extended information.
Log files will be created in the folder you selected.

How to use PAL.EXE and PAL32.EXE 55

Copyright © 2001-2025 Peganza

This program has the same functionality as the normal program. But it runs considerably
slower, so only use it when needed.
For example it always uses one single thread to create reports, regardless of your
setting.

Also only select the options relevant to your problem. For example, if PAL cannot find a
specific source file, select the "Log file searches" options.

Specific settings will be written to PAL.DEBUG.INI or PAL32.DEBUG.INI. Other settings
will be written to PAL.INI or PAL32.INI just as if you run the "normal" PAL.EXE or
PAL32.EXE.

See also:

Introduction
How to use PALCMD.EXE
Known limitations
Command Line Options for PAL.EXE and PAL32.EXE
Main menu
Main window

Pascal Analyzer56

Copyright © 2001-2025 Peganza

11 How to use PALCMD.EXE and PALCMD32.EXE

The standalone command-line version PALCMD.EXE (and 32-bits PALCMD32.EXE) is
useful when you want to automate the process of creating reports. PALCMD.EXE uses the
same engine as the GUI version PAL.EXE and produces the same output.

Also, PALCMD.EXE will parse and produce reports roughly 10% faster than PAL.EXE
(YMMV). This is because some code needed for the user interface is not run in the
command-line version.

Run PALCMD.EXE from the command prompt using the following syntax:

PALCMD projectpath|sourcepath [options]

Option Explanation
/A+ Parse both source/form files
/A- Parse source files only
/FA Parse all files
/F+ Parse all files
/FR Parse main file and directly used files
/FM Parse main file only
/F- Parse main file only
/Q Quiet mode

/CBP Borland Pascal 7 (or earlier)
/CD1 Delphi 1
/CD2 Delphi 2
/CD3 Delphi 3
/CD4 Delphi 4
/CD5 Delphi 5
/CD6 Delphi 6
/CD7 Delphi 7
/CD8 Delphi 8 for .NET
/CD9W Delphi 2005 for Win32
/CD9N Delphi 2005 for .NET
/CD10W Delphi 2006 for Win32 (also Turbo Delphi for Win32)
/CD10N Delphi 2006 for .NET (also Turbo Delphi for .NET)
/CD11W Delphi 2007 for Win32
/CD11N Delphi 2007 for .NET
/CD12W Delphi 2009 for Win32
/CD14W Delphi 2010 for Win32
/CDXEW Delphi XE for Win32

/CDXE2W32 Delphi XE2 for Win32
/CDXE2W64 Delphi XE2 for Win64
/CDXE2OSX Delphi XE2 for OSX

/CDXE3W32 Delphi XE3 for Win32
/CDXE3W64 Delphi XE3 for Win64
/CDXE3OSX Delphi XE3 for OSX

/CDXE4W32 Delphi XE4 for Win32

How to use PALCMD.EXE and PALCMD32.EXE 57

Copyright © 2001-2025 Peganza

/CDXE4W64 Delphi XE4 for Win64
/CDXE4OSX Delphi XE4 for OSX
/CDXE4IOSDEV Delphi XE4 for iOS Device
/CDXE4IOSSIM Delphi XE4 for iOS Simulator

/CDXE5W32 Delphi XE5 for Win32
/CDXE5W64 Delphi XE5 for Win64
/CDXE5OSX Delphi XE5 for OSX
/CDXE5IOSDEV Delphi XE5 for iOS Device
/CDXE5IOSSIM Delphi XE5 for iOS Simulator
/CDXE5ANDROIDDelphi XE5 for Android

/CDXE6W32 Delphi XE6 for Win32
/CDXE6W64 Delphi XE6 for Win64
/CDXE6OSX Delphi XE6 for OSX
/CDXE6IOSDEV Delphi XE6 for iOS Device
/CDXE6IOSSIM Delphi XE6 for iOS Simulator
/CDXE6ANDROIDDelphi XE6 for Android

/CDXE7W32 Delphi XE7 for Win32
/CDXE7W64 Delphi XE7 for Win64
/CDXE7OSX Delphi XE7 for OSX
/CDXE7IOSDEV Delphi XE7 for iOS Device
/CDXE7IOSSIM Delphi XE7 for iOS Simulator
/CDXE7ANDROIDDelphi XE7 for Android

/CDXE8W32 Delphi XE8 for Win32
/CDXE8W64 Delphi XE8 for Win64
/CDXE8OSX Delphi XE8 for OSX
/CDXE8IOSDEV Delphi XE8 for iOS Device 32-bits
/CDXE8IOSDEV6
4

Delphi XE8 for iOS Device 64-bits

/CDXE8IOSSIM Delphi XE8 for iOS Simulator
/CDXE8ANDROIDDelphi XE8 for Android

/CD10W32 Delphi 10 for Win32
/CD10W64 Delphi 10 for Win64
/CD10OSX Delphi 10 for OSX
/CD10IOSDEV Delphi 10 for iOS Device 32-bits
/CD10IOSDEV64 Delphi 10 for iOS Device 64-bits
/CD10IOSSIM Delphi 10 for iOS Simulator
/CD10ANDROID Delphi 10 for Android

/CD101W32 Delphi 10.1 for Win32
/CD101W64 Delphi 10.1 for Win64
/CD101OSX Delphi 10.1 for OSX
/CD101IOSDEV Delphi 10.1 for iOS Device 32-bits
/CD101IOSDEV6
4

Delphi 10.1 for iOS Device 64-bits

/CD101IOSSIM Delphi 10.1 for iOS Simulator
/CD101ANDROIDDelphi 10.1 for Android

/CD102W32 Delphi 10.2 for Win32

Pascal Analyzer58

Copyright © 2001-2025 Peganza

/CD102W64 Delphi 10.2 for Win64
/CD102OSX Delphi 10.2 for OSX
/CD102IOSDEV Delphi 10.2 for iOS Device 32-bits
/CD102IOSDEV6
4

Delphi 10.2 for iOS Device 64-bits

/CD102IOSSIM Delphi 10.2 for iOS Simulator
/CD102ANDROIDDelphi 10.2 for Android
/CD102LINUX64 Delphi 10.2 for Linux 64-bits

/CD103W32 Delphi 10.3 for Win32
/CD103W64 Delphi 10.3 for Win64
/CD103OSX Delphi 10.3 for OSX 32-bits
/CD103OSX64 Delphi 10.3 for OSX 64-bits
/CD103IOSDEV Delphi 10.3 for iOS Device 32-bits
/CD103IOSDEV6
4

Delphi 10.3 for iOS Device 64-bits

/CD103IOSSIM Delphi 10.3 for iOS Simulator
/CD103ANDROIDDelphi 10.3 for Android 32-bits
/CD103ANDROID
64

Delphi 10.3 for Android 64-bits

/CD103LINUX64 Delphi 10.3 for Linux 64-bits

/CD104W32 Delphi 10.4 for Win32
/CD104W64 Delphi 10.4 for Win64
/CD104OSX Delphi 10.4 for OSX 32-bits
/CD104OSX64 Delphi 10.4 for OSX 64-bits
/CD104IOSDEV Delphi 10.4 for iOS Device 32-bits
/CD104IOSDEV6
4

Delphi 10.4 for iOS Device 64-bits

/CD104IOSSIM Delphi 10.4 for iOS Simulator
/CD104ANDROIDDelphi 10.4 for Android 32-bits
/CD104ANDROID
64

Delphi 10.4 for Android 64-bits

/CD104LINUX64 Delphi 10.4 for Linux 64-bits

/CD11W32 Delphi 11 for Win32
/CD11W64 Delphi 11 for Win64
/CD11OSX Delphi 11 for OSX 32-bits
/CD11OSX64 Delphi 11 for OSX 64-bits
/CD11IOSDEV Delphi 11 for iOS Device 32-bits
/CD11IOSDEV64 Delphi 11 for iOS Device 64-bits
/CD11IOSSIM Delphi 11 for iOS Simulator
/CD11ANDROID Delphi 11 for Android 32-bits
/CD11ANDROID6
4

Delphi 11 for Android 64-bits

/CD11LINUX64 Delphi 11 for Linux 64-bits
/CD11OSXARM6
4

Delphi 11 for OSX ARM 64-bits

/CD12W32 Delphi 12 for Win32
/CD12W64 Delphi 12 for Win64
/CD12OSX Delphi 12 for OSX 32-bits
/CD12IOSDEV Delphi 12 for iOS Device 32-bits

How to use PALCMD.EXE and PALCMD32.EXE 59

Copyright © 2001-2025 Peganza

/CD12IOSDEV64 Delphi 12 for iOS Device 64-bits
/CD12IOSSIM Delphi 12 for iOS Simulator
/CD12ANDROID Delphi 12 for Android 32-bits
/CD12ANDROID6
4

Delphi 12 for Android 64-bits

/CD12LINUX64 Delphi 12 for Linux 64-bits
/CD12OSXARM6
4

Delphi 12 for OSX ARM 64-bits

/BUILD=x Build configuration
/D=x Conditional defines (/D=MyDef1;MyDef2)
/F=format /F=T -> text, /F=H -> HTML, /F=X -> XML
/I=path Path to PAL.INI (/I=C:\PAL\PAL.INI)
/L=path Path to text file with limit info (/L=C:\PAL\Limits.txt)
/LB Only output "bad" results, worse than the limit
/LG Only output "good" results, better than the limit
/NAME=projectn
ame

Overrides name for created/used PAP-file and report folder

/P Create/use PAP-file in source folder
/PRIO=flag Set process priority, see WinAPI and SetPriorityClass for possible values
/R=path Report root folder (/R=C:\Out or /R="C:\My Out")
/S=folders Search folders (/S="C:\CODE1;C:\My Code")')
/T=n Number of report threads 1-64
/X=x Excluded search folders (/X=C:\DIR1<+>;C:\DIR2)
/XF= Excluded files (/XF=System.pas;MyUnit.pas)

Options are read from the project file. Some of the settings may be overridden by options
on the command-line (see above).

The command-line version can, in contrast to the GUI version, also analyze source code
without first creating a project. Just supply a source code path on the command-line
instead of a project path. PALCMD will then use the settings according to the template
which is used for new projects. These settings are in PAL.INI which is located in
C:\Documents and Settings\<acc>\Application Data\Peganza\Pascal Analyzer.

The PAL.INI file is specially handled by PALCMD. If "/I" parameter is used the PAL.INI file
as pointed to by the path, will be read. Else, if a PAL.INI file exists in the same folder as
the program file itself, it will read the PAL.INI file from that location, otherwise it will
read it from the same folder as the GUI program does. The GUI program will read the
PAL.INI file from the special folder under "C:\Documents and Settings". In this way, if
you keep the PALCMD.EXE in a special folder, you can make sure that it always uses the
correct default options, by copying the PAL.INI file to that folder. This PAL.INI file will
then not be affected of any changes that you happen to make while running the GUI
program.

If an error occurs when PALCMD is run, the application terminates with exit code 99.

Example:

PALCMD

Shows help info and stops

Pascal Analyzer60

Copyright © 2001-2025 Peganza

PALCMD C:\projects\MyProj.pap

Runs PALCMD and analyses c:\projects\MyProj.pap

PALCMD "C:\My Units\MyUnits.pas" /FM /CBP

Runs PALCMD and analyses C:\My Units\MyUnits.pas with defaults as set in PAL.INI, but
specifies that only the main file should be parsed, and that the compiler target is Borland
Pascal 7.

PALCMD "C:\My Units\MyUnits.pas" /L=C:\PALCMD\Limits.txt

Runs PALCMD and analyses C:\My Units\MyUnits.pas with defaults as set in PAL.INI.
Uses limits set in Limits.txt (see below under /L)

You can also, starting from PAL 8, use just a file name as parameter, like:

PALCMD MyProj.pap

.. or

PALCMD MyUnits.pas

PALCMD will then check the current working directory for this file. If the current working
directory is not specified, it will use the same directory as where the PALCMD program is
located.

/BUILD specifies build configuration

This setting overrides the setting in the PAL.INI file or the project options.
Please note that this setting is case-sensitive and must exactly match the name of the
build configuration as stored in the DPROJ-file.

/D specifies conditional defines

This setting overrides the setting in the PAL.INI file or the project options. Conditional
defines from source code and/or found in the Delphi project file will also be used.

/F specifies the report format (text, HTML, XML)

This setting overrides the setting for report format in the PAL.INI file or the project file.

/I specifies the path to PAL.INI

This forces PALCMD to use the PAL.INI pointed to by the supplied path.

/L specifies the path to a text file with limit info, in this case
C:\PALCMD\Limits.txt.

For example, if the file contains this line:

How to use PALCMD.EXE and PALCMD32.EXE 61

Copyright © 2001-2025 Peganza

WARN1=5

.. "WARN1" is the abbreviation for the section "'Interfaced identifiers that are used, but
not outside of unit" in the Warnings Report.
If then the number of warnings in a particular run of PALCMD.EXE exceeds 5,
PALCMD.EXE will list it in the output.

When the number of warnings is less than the expected, it will also be listed.

The listings are also written to the Status Report.

You can add how many lines as you wish to the limit file. Each line will be checked
against the specified section and report.

This feature is not available in PAL.EXE (the GUI program).

/LB, if /L is used, means that only "bad" limit results will be output

These are results that are worse than the limit. If /LB is used, /LG cannot be used.

/LG, if /L is used, means that only "good" limit results will be output

These are results that are better than the limit. If /LG is used, /LB cannot be used.

/NAME=projectname

Use this parameter to change the name for the created/used PAP-file, and also name for
the report folder.

/P creates/uses a PAP file

When specifying only a source file and not a project file on the command-line, there will
be no PAP file where to store information about new and old hits counts for reports. To
easily allow for this, without having to create a PAP file, include the switch /P. A PAP-file
will be created in the source folder. If it already exists, it will be used.

/PRIO=flag

Set process priority, see Windows API and SetPriorityClass for possible values.

/R specifies the report root folder

This setting overrides the setting for report folder in the PAL.INI file or the project file.

Pascal Analyzer62

Copyright © 2001-2025 Peganza

/S specifies search folders, separated with a semicolon

This setting overrides the setting for search folders in the PAL.INI file or the project file.

/T specifies the number of report threads to use

This setting overrides the setting in the PAL.INI file

/X specifies excluded search folders, separated with a semicolon.

It is also possible to use "<+>" to specify that subdirectories also should be excluded.

This setting overrides the setting in the PAL.INI file or the project file.

/XF specifies excluded files, separated with a semicolon.

These files are excluded from parsing.

This setting overrides the setting in the PAL.INI file or the project file.

See also:

Introduction
How to use PAL.EXE and PAL32.EXE
Known limitations
Command Line Options for PAL.EXE and PAL32.EXE
Main menu
Main window

Installation folders 63

Copyright © 2001-2025 Peganza

12 Installation folders

Pascal Analyzer is typically installed with this folder structure (Windows XP, Windows 7,
Windows 8):

C:\Program Files\Peganza\Pascal Analyzer

(or C:\Program Files (x86)\Peganza\Pascal Analyzer when running on a 32-bit computer)

This folder contains executable files, help files etc for the installation of Pascal Analyzer.
On a 64-bits system, the 32-bits version will be available in the sub-folder "PAL32".

C:\Documents and Settings\<acc>\Application Data\Peganza\Pascal Analyzer

This is where the PAL.INI file is stored. The INI file contains common settings for the PAL
environment.
When running under Windows Vista, this folder is instead
C:\Users\<acc>\AppData\Roaming\Peganza\Pascal Analyzer.

In this folder, you will also find error log files, if an unexpected error occurs. You should
send those files to support@peganza.com together with a description about how the error
occurred.

C:\Documents and Settings\<acc>\My Documents\Pascal Analyzer\Projects

This folder contains the project files (*.pap, *.pam). You can store your projects in any
folder, this is just the default folder.

C:\Documents and Settings\<acc>\My Documents\Pascal
Analyzer\Projects\Output

This folder is the default root folder for your report files. If you for example create reports
for the project MyProj, the output files will be found in C:\Documents and
Settings\<acc>\My Documents\Pascal Analyzer\Projects\Output\MyProj. Of course you
are free to select any folder for the output.

C:\Documents and Settings\<acc>\My Documents\Pascal Analyzer\Samples

This folder contains sample source code files (*.dpr, *.pas) that illustrate various
selected report sections.
Create a Pascal Analyzer project with Samples.dpr as main file, and analyze.

See also:

Introduction
How to use PAL.EXE and PAL32.EXE
How to use PALCMD.EXE and PALCMD32.EXE
Known limitations
Command Line Options for PAL.EXE and PAL32.EXE

mailto:support@peganza.com

Pascal Analyzer64

Copyright © 2001-2025 Peganza

Main menu
Main window

Main window 65

Copyright © 2001-2025 Peganza

13 Main window

The main interface of PAL consists of a menu, a toolbar, a report list window, an editor
window, and a status bar. The toolbar provides speed buttons for common menu items,
and the tree view enables quick report selection.

The main window in Pascal Analyzer

There are horizontal and vertical bars dividing the report list, report viewer and source
viewer windows. Click on the bar with the mouse and drag it to change the sizes of the
windows. If you click the hotspot button in the center of the bar (or F9), the report list
window will be temporarily hidden. Click the hotspot button again (or F9) to make it
visible. Click on the report window hotspot button (or F8) to toggle on/off viewing of the
source window.

Select Options|Arrange in the menu to choose between possible arrangements for the
report list and viewer windows.

Toolbar

Pascal Analyzer66

Copyright © 2001-2025 Peganza

The toolbar contains speed buttons for some of the most common menu selections.

Report list

The report list is displayed as a tree structure with reports. At the level below the
reports, there are sections for the reports. Some reports only have one section, and in
this case only the report level is shown.

If one or more report sections should be turned off (not selected), you will be notified of
this by the report caption.

Click on an item in the report list window to move to a report or a report section in the
viewer. The report is loaded in the report viewer window.

There is a popup menu associated with the report list that you can invoke by clicking the
right mouse button. The popup menu has the following items:

- Display Root (collapse the entire list)
- Display Report Groups (collapse the list and show the report group level)
- Display Reports (collapse the list and show the report level)
- Display Report sections (expand the list fully)

You can also use the mouse-wheel to change font size in the report list.

Report Viewer

PAL presents the reports in a viewer window as read-only text blocks in one or more tab
pages. The reports are also written to one or several files in the selected report folder.
The format is ordinary text, HTML or XML. Reports are as default opened in
multi-tab-pages

HTML format (default) is suitable for web publishing. There are also more ways to
customize the layout and appearance of the reports. An advantage with text files is that
they are faster to load.

Navigate in the text by scrolling or with the PgDn/PgUp keys, or click on an item in the
report list.
The following commands are available in the viewer for reports in text format.

Down Move the cursor down to the next line
Up Move the cursor up to the previous line

Left Move the cursor left one character
Right Move the cursor right one character

Home Move the cursor to the beginning of the line
End Move the cursor to the end of the line

PgDn Move to the next page
PgUp Move to the previous page

Main window 67

Copyright © 2001-2025 Peganza

Ctrl+Home Move to the top of the text
Ctrl+End Move to the bottom of the text
Ctrl+MouseWheel Increase/decrease font size
Ctrl+Shift+0-9 Set the position of bookmark 0-9 to the current position
Ctrl+0-9 Move to the previously set bookmark 0-9

Ctrl+C Copy the selected text to the clipboard

Ctrl+F Find
F3 Find next
Shift+F3 Find previous

Shift+Down Extend the selection down one line
Shift+Up Extend the selection up one line

Shift+Left Extend the selection to the left one character
Shift+Right Extend the selection to the right one character

Shift+Home Extend the selection to the beginning of the current line
Shift+End Extend the selection to the end of the current line

Shift+PgDn Extend the selection down one page
Shift+PgUp Extend the selection up one page

For HTML and XML reports, PAL uses the browser component in SHDOCVW.DLL, a library
included with Windows. This gives the browser in PAL capabilities similar to the browser
in MS Internet Explorer.

Double-clicking in reports

If a row or an item on a row is double-clicked, three actions are possible:

- No action

- A source window is opened and the relevant source file is opened and displayed in the
built-in editor (default). The cursor is positioned on the line. There are buttons to move
back or forward through the list of source locations.

- The source file is opened in the editor window in the Delphi IDE and the cursor is
positioned on the relevant line.

Normally, double-click the word that describes the location of the identifier.

**
* Identifiers Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *
**

Identifiers (1286):
--

_FastCompareText Func, Interfaced GAsmCode (7)
_FastIntToStr Func, Interfaced GAsmCode (8)
_FastPosIntToStr Func, Interfaced GAsmCode (9)
_FastSameText Func, Interfaced GAsmCode (10)

Pascal Analyzer68

Copyright © 2001-2025 Peganza

In the report above, double-click on “GAsmCode” to locate the corresponding source line.

**
* Brief Cross-reference Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *
* 2002-11-20 19:18:22 *
**

Abbreviations: c=Created f=Freed i=Implemented r=Referenced s=Set u=Unknown v=Varparam

Brief crossreference:
--

_FastSameText Func, Interfaced GAsmCode (10)
 GAsmCode 90i
 GTools 782r 805r 2070r 2084r 2092r

To locate each reference in this report, click on “782r”, “805r” and so on. Double-clicking
on a line will in most reports trigger this action. One of the exception however is the Uses
Report.

Of course, if you edit the Delphi source code, it may happen that the code line numbers
in the reports are not longer valid, for example after deleting or adding lines.
Double-clicking in the report will in this case probably locate the wrong line in the source
code.

To select the action taken when double-clicking, in the source viewer, go to the
Preferences Dialog.

There are some DLL modules that are used to interact with the Delphi IDE, PALWIZ*.DLL,
for various Delphi versions:

PALWIZ.DLL Pre-Delphi 2009
PALWIZ2.DLL Delphi 2009
PALWIZ3.DLL Delphi 2010
PALWIZ4.DLL Delphi XE
PALWIZ5.DLL Delphi XE2
PALWIZ6.DLL Delphi XE3
PALWIZ7.DLL Delphi XE4
PALWIZ8.DLL Delphi XE5
PALWIZ9.DLL Delphi XE6
PALWIZ10.DLL Delphi XE7
PALWIZ11.DLL Delphi XE8

PALWIZ12.DLL Delphi 10
PALWIZ13.DLL Delphi 10.1
PALWIZ14.DLL Delphi 10.2
PALWIZ15.DLL Delphi 10.3
PALWIZ16.DLL Delphi 10.4
PALWIZ17.DLL Delphi 11
PALWIZ18.DLL Delphi 12

Editor window

The editor window contains one or more tab pages. Each tab page is a separate editor.

Main window 69

Copyright © 2001-2025 Peganza

Use it to make modifications to your source code. To open a source code file, double-click
on an identifier in a report. This is only available if you have selected to open an editor
window (see Preferences - Source Code).

Many standard functions are available in the editor, like

- undo/redo
- copy/paste
- find/replace
- syntax highlighting
- modification markers
- line numbers
- supports Unicode

Some common commands:

Ctrl+Mouse wheel Increase/decrease font size

Special navigation features:

Double-click on
identifier

Go to declaration for the identifier

Right-click on identifier Select from reference menu
Ctrl+Enter Open module at cursor in a new editor tab

Ctrl+Alt+C Select from a list of all classes
Ctrl+Alt+I Select from a list of all interfaces
Ctrl+Alt+S Select from a list of subprograms for the module
Ctrl+Alt+U Select from a list of used units for the module

Ctrl+Left Go to previous location in history list
Ctrl+Right Go to next location in history list

Ctrl+Alt+Left Go to previous reference location for the selected identifier
Ctrl+Alt+Right Go to next reference location for the selected identifier

Ctrl+Alt+Up Go to declaration for subprogram
Ctrl+Alt+Down Go to implementation for subprogram

Alt+Left Go back to previous visited code location
Alt+Right Go forward to next visited code location

Ctrl+F Find/replace
F3 Find/replace next
Shift+F3 Find/replace previous

Editor files are optionally backuped to a history folder, just like in the Delphi IDE.
See Preferences|Editor.

Editor files also support different formats, like ANSI and UTF-8. The editor will try and

Pascal Analyzer70

Copyright © 2001-2025 Peganza

auto detect the format while loading the file.

Status bar

The status bar presents different information, such as the currently loaded report file.

See also:

How to use PAL.EXE and PAL32.EXE
How to use PALCMD.EXE and PALCMD32.EXE
Introduction
Known limitations
Command Line Options for PAL.EXE and PAL32.EXE
Main menu

Reports 71

Copyright © 2001-2025 Peganza

14 Reports

The purpose of Pascal Analyzer is to generate reports that give information about your
source code. Currently there are 53 reports that are generated for normal Pascal
Analyzer projects, and four reports that are generated for multi-projects. These reports
are categorized in five report groups:

 General

 Metrics

 Reference

 Class

 Control

Please note that all reports are not always relevant for all compiler targets. Sometimes
some sections are relevant and others not. Versions supported are indicated in the
following reference for each report:

BP7 Borland Pascal 7 (16-bits) and earlier
D1 Delphi 1 (16-bits)
D2 Delphi 2
D3 Delphi 3
D4 Delphi 4
D5 Delphi 5
D6 Delphi 6
D7 Delphi 7

D8 Delphi 8 for .NET
D2005
W

Delphi 2005 for Win32

D2005
N

Delphi 2005 for .NET

D2006
W

Delphi 2006 for Win32

D2006
N

Delphi 2006 for .NET

D2007
W

Delphi 2007 for Win32

D2009
W

Delphi 2009 for Win32

D2010
W

Delphi 2010 for Win32

DXE Delphi XE for Win32
DXE2 Delphi XE2 for Win32/Win64/OSX
DXE3 Delphi XE3 for Win32/Win64/OSX
DXE4 Delphi XE4 for Win32/Win64/OSX/iOS
DXE5 Delphi XE5 for Win32/Win64/OSX/iOS/Android
DXE6 Delphi XE6 for Win32/Win64/OSX/iOS/Android
DXE7 Delphi XE7 for Win32/Win64/OSX/iOS/Android
DXE8 Delphi XE8 for Win32/Win64/OSX/iOS/Android
D10 Delphi 10 (Seattle) for

Win32/Win64/OSX/iOS/Android
D10.1 Delphi 10.1 (Berlin) for

Pascal Analyzer72

Copyright © 2001-2025 Peganza

Win32/Win64/OSX/iOS/Android
D10.2 Delphi 10.2 (Tokyo) for

Win32/Win64/OSX/iOS/Android/Linux64
D10.3 Delphi 10.3 (Rio) for

Win32/Win64/OSX/iOS/Android/Linux64
D10.4 Delphi 10.4 (Sydney) for

Win32/Win64/OSX/iOS/Android/Linux64
D11 Delphi 11 (Alexandria) for

Win32/Win64/OSX/iOS/Android/Linux64/OSX
ARM

D12 Delphi 12 (Athens) for
Win32/Win64/OSX/iOS/Android/Linux64/OSX
ARM

Most reports have "Target: All" which means they are relevant for all compiler targets.

Each report group and report is associated with a small picture that is displayed in the
report list.

See also:

 General Reports

 Metrics Reports

 Reference Reports

 Class Reports

 Control Reports

All Reports

14.1 All Reports

This is a list of all reports: available in Pascal Analyzer:

General Reports

 Status Report

 Strong Warnings Report

 Warnings Report

 Optimization Report

 Code Reduction Report

 Memory Report

 Convention Compliance Report

 Inconsistent Case Report

 Prefix Report

 NextGen Readiness Report

Metrics Reports

Reports 73

Copyright © 2001-2025 Peganza

 Totals Report

 Module Totals Report

 Complexity Report

 Object-oriented metrics Report

Reference Reports

 Modules Report

 Identifiers Report

 Duplicate Identifiers Report

 Similarity Report

 Literal Strings Report

 Subprogram Index Report

 Bindings Report

 Third-party dependencies Report

 Most Called Report

 Call Tree Report

 Reverse Call Tree Report

 Call Index Report

 Exception Report

 Brief Cross-reference Report

 Cross-reference Report

 Used Outside Report

 Subprogram Parameters Report

 Uses Report

 Conditional Symbols Report

 Directives Report

 To-Do Report

 Module Call Tree Report

 Help Report

 Searched Strings Report

 Map File Report

 Clone Report

Class Reports

 Class Index Report

 Class Summary Report

 Class Hierarchy Report

 Class Field Access Report

Pascal Analyzer74

Copyright © 2001-2025 Peganza

Control Reports

 Control Index Report

 Control Alignment Report

 Control Size Report

 Control Tab Order Report

 Control Warnings Report
 Property Value Report
 Missing Property Report
 Form Report

 Events Report

See also:

 General Reports

 Metrics Reports

 Reference Reports

 Class Reports

 Control Reports

Reports

14.2 General Reports

The general reports are:

 Status Report

 Strong Warnings Report

 Warnings Report

 Optimization Report

 Code Reduction Report

 Memory Report

 Convention Compliance Report

 Inconsistent Case Report

 Prefix Report

 NextGen Readiness Report

See also:

Reports
All Reports

Reports 75

Copyright © 2001-2025 Peganza

14.2.1 Status Report

Targets: All

PAL always generates this report, regardless of any settings. This report presents
important facts about the current analysis, e.g. selected compiler directives and search
paths.

The search folders list in the Status Report lists the folders that are set in the Properties
dialog. But added to the list are folders for files that are found by PAL during the parsing
process, for instance by following relative paths in the project file. Also added are folders
from Delphi’s library and browsing paths, if those options are set in the project properties
dialog.

The status report also lists source files found by PAL, and files not found.

**
* Status Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *
**

Overview:
--

Analyzed by: PAL - Pascal Analyzer version 3.0.0.0
Licensed to: NN
Parse speed: 6500 lines in 0.64 seconds (10140 lines/sec).

Main file: C:\PROJEKT\RAMVERK\GCACHE.PAS
Compiler: Delphi 7
Files parsed: Both source and form files
Only main file parsed: No

Search folders: Components

Excluded for reports: (none)
Unit aliases: WinTypes=Windows
 WinProcs=Windows
 DbiTypes=BDE
 DbiProcs=BDE
 DbiErrs=BDE

Predefined: VER150;MSWINDOWS;WIN32;CPU386;ConditionalExpressions

Conditional defines: (none)
Global switches: A+;B-;C+;D+;E-;F-;G+;H+;I+;J-;K+;L+;M-;N+;O+;P+;Q-
 R-;S+;T-;U-;W-;V+;X+;Y-;YD;Z-

Double-clicking on a line in the Status Report gives different actions:

If clicking on a file path, the file will open in the built-in editor.
Clicking on a folder name, will open the folder in Windows Explorer.

The Status Report, as all reports, is in UTF-8 format.

See also:

 General Reports

Pascal Analyzer76

Copyright © 2001-2025 Peganza

14.2.2 Strong Warnings Report

Targets: All except BP7 (partly)

This report generates warnings that help you identify especially severe errors. Those are
errors that can cause runtime failures (“showstoppers”), or erroneous results in your
application.

Sections:

STWA1-Property access in read/write methods
STWA2-Ambiguous unit references
STWA3-Subprogram calls itself unconditionally
STWA4-Index error
STWA5-Possible bad pointer usage

STWA6-Possible bad typecast (for objects: consider using "as")
STWA7-For-loop with possible bad conditions
STWA8-Bad parameter usage (same identifier used for different parameter)
STWA9-Generic interface has GUID
STWA10-Interface lacks GUID

STWA11-Duplicated GUID
STWA12-Equal if-then and if-else statements

STWA1-Property access in read/write methods

(Not relevant for BP7)

This section reports locations where properties are referenced in read/write methods, like
for example:

Reports 77

Copyright © 2001-2025 Peganza

These sorts of errors can cause infinite recursion.

STWA2-Ambiguous unit references

This sections lists identifiers with ambiguous unit references.
Consider this example:

What will be the output from the program? In this case, it will be “Goodbye”, because the
last unit listed in the uses clause will have precedence.

The reference to TheValue is ambiguous or unclear, so it will be listed in this report
section. Consider what happens if originally only unit “A” was listed in the uses clause.
Then the output would be “Hello”. If then maybe another programmer without any sense
of danger will add “B” to the uses clause, the output will be changed.

You should prefix the reference, like “B.TheValue”, to avoid any uncertainty.

Pascal Analyzer78

Copyright © 2001-2025 Peganza

STWA3-Subprogram calls itself unconditionally

This sections lists subprograms that call themselves unconditionally. This will lead to
infinite recursion and stack failure at runtime if the subprogram is called:
Consider this example:

Currently overload subprograms are not examined.

STWA4-Index error

This sections lists locations in your code with an index error.

Example:

If the code had been instead "Arr[553]" (an explicit value), the compiler would have
halted on this line. But for a variable, it does not.

STWA5-Possible bad pointer usage

This section lists locations in your code where a pointer possibly is misused. For example
a pointer that has been set to nil and further down in the code is dereferenced.

Example:

Reports 79

Copyright © 2001-2025 Peganza

STWA6-Possible bad typecast (for objects: consider using "as")

This section lists locations in your code with a possibly bad typecast. If you use the "as"
operator, an exception will instead be raised. Otherwise there may be access violations
and errors in a totally different code location, which is not very easy to track down.

Example:

In the example above, the last line could better be written (although still faulty!) as

Monkey := Banana as TAnimal;

This should result in an exception. But this is still preferable; instead of letting the code

Pascal Analyzer80

Copyright © 2001-2025 Peganza

proceed resulting maybe in access violations later in a totally unrelated part of the code.

Also situations where a "bigger" type is typecast to a "smaller", will trigger a warning.
For example "Ch := Char(I)" where Ch is of type Char and I is of type Integer. This may
of course be totally valid if you make sure that I is not too big.

When a smaller variable is typecast to a Pointer, there will also be a warning. For
example "Pointer(I)" when I is an Integer, and Pointer is 64-bits.

STWA7-For-loop with possible bad conditions

This section lists locations in your code where for loop has any of these conditions:

STWA8-Bad parameter usage (same identifier used for different parameter)

This section lists locations in your code where a call to a subprogram is made with bad
parameters. The situation occurs when the called subprogram has an "out" parameter
plus at least one another parameter. The identifier passed is used for both these
parameters. Because an "out"-parameter is cleared in the called subprogram this will
give unexpected results for reference-counted variables like strings and dynamic arrays.

Reports 81

Copyright © 2001-2025 Peganza

STWA9-Generic interface has GUID

This section lists generic interface types that declare a GUID (Globally Unique Identifier):

The problem with this is that all generic types created from this interface, like
IMyInterface<Integer> and IMyInterface<string> will share the same GUID.
This will cause type casting to malfunction.

STWA10-Interface lacks GUID

This section lists interface types that lacks a GUID.

STWA11-Duplicated GUID

This section reports code locations with duplicated GUID.

Pascal Analyzer82

Copyright © 2001-2025 Peganza

STWA12-Equal if-then and if-else statements

This section reports if-structure with identical then- and else-statements (without
case-sensitivity).

If the statements only differ in case for literal strings, like "hello world" in if-then and
"Hello World" in else-then, they are considered to be different, and thus does not trigger
a warning.

See also:

 General Reports

14.2.3 Warnings Report

Targets: All

This report contains several sections that present different types of warnings. These
warnings point to possible anomalies or errors in your source code. Because PAL does not
require full access to all source code, some of these warnings may however turn out to
be just false.

Sections:

WARN1-Interfaced identifiers that are used, but not outside of unit
WARN2-Interfaced class identifiers that are public/published, but not used outside of unit
WARN3-Variables that are referenced, but never set
WARN4-Variables that are referenced, but possibly never set (ref/set by unknown
subprograms)
WARN5-Variables that are set, but never referenced

WARN6-Variables that are set, but possibly never referenced (ref/set by unknown
subprograms)
WARN7-Local variables that are referenced before they are set
WARN8-Local variables that may be referenced by unknown subprogram before they are
set
WARN9-Var parameters that are used, but never set
WARN10-Var parameters that are used, but possibly never set (ref/set by unknown
subprograms

WARN11-Value parameters that are set
WARN12-Value parameters that are possibly set (ref/set by unknown subprogram)
WARN13-Interfaces passed as parameters without "const" directive
WARN14-Variables with absolute directive
WARN15-Constructors/destructors without calls to inherited

WARN16-Destructors without override directive
WARN17-Classes with more than one destructor
WARN18-Function result not set
WARN19-Recursive subprograms

Reports 83

Copyright © 2001-2025 Peganza

WARN20-Dangerous Exit-statements

WARN21-Dangerous Raise
WARN22-Dangerous Label-locations inside for-loops
WARN23-Dangerous Label-locations inside repeat/while-loops
WARN24-Possible bad object creation
WARN25-Bad thread-local variables

WARN26-Instance created of class with abstract methods
WARN27-Empty code blocks and short-circuited statements
WARN28-Empty case labels
WARN29-Short-circuited for-statements
WARN30-Short-circuited if/case-statements

WARN31-Short-circuited on-statements
WARN32-Short-circuited repeat-statements
WARN33-Short-circuited while-statements
WARN34-Empty except-block
WARN35-Empty finally-block

WARN36-Forward directive in interface
WARN37-Empty subprogram parameter list
WARN38-Ambiguous references in with-blocks
WARN39-Classes without overrides of abstract methods
WARN40-Local for-loop variables read after loop

WARN41-Local for-loop variables possibly read after loop
WARN42-For-loop variables not used in loop
WARN43-Non-public constructors/destructors
WARN44-Functions called as procedures
WARN45-Mismatch property read/write specifiers

WARN46-Local variables that are set but not later used
WARN47-Duplicate lines
WARN48-Duplicate class types in except-block
WARN49-Redeclared identifiers from System unit
WARN50-Identifier with same name as keyword/directive

WARN51-Out parameter is read before set, or never set
WARN52-Possible bad assignment
WARN53-Mixing interface variables and objects
WARN54-Set before passed as out parameter
WARN55-Redeclares ancestor member, or method in helped class/record

WARN56-Parameter to FreeAndNil is not an object
WARN57-Enumerated constant missing in case structure
WARN58-Mixed operator precedence levels
WARN59-Explicit float comparison
WARN60-Condition evaluates to constant value

WARN61-Assigned to itself
WARN62-Possible orphan event handler
WARN63-Mismatch 32/64-bits

Pascal Analyzer84

Copyright © 2001-2025 Peganza

WARN1-Interfaced identifiers that are used, but not outside of unit

This section lists all identifiers that are declared in the interface section of a unit, and that
are used in the unit, but not outside the unit. You should declare these identifiers in the
implementation section of the unit instead.

This section is also generated for multi-projects.

Restrictions:
Interfaced identifiers that are not used at all are not listed. These identifiers are already
listed in the “Identifiers never used” section in the Code Reduction Report.

Recommendation:
Declare these identifiers in the implementation section of the unit, to avoid unnecessary
exposure.

__

WARN2-Interfaced class identifiers that are public/published, but not used outside of unit

This section lists all identifiers that are members of a class, and are declared with the
public/published directive, but not used outside of the unit.

This section is also generated for multi-projects.

Recommentation:
Declare these identifiers with the private/protected directive instead.

__

WARN3-Variables that are referenced, but never set

This section lists all declared and referenced variables that never are set. Possibly this is
an error, but the reason could also be that the variable is set in code that is not seen by
the parser.

Restrictions:
Variables marked with the absolute directive are not examined. These identifiers shadow
another variable in memory, and are changed whenever the other variable changes.

Recommendation:
Examine why these variables are referenced, but never set. False warnings may be
generated in some cases for null-terminated strings, where the actual pointer (PChar) is
not set, but when the contents of the buffer pointed to is indeed changed.

__

Reports 85

Copyright © 2001-2025 Peganza

WARN4-Variables that are referenced, but possibly never set (ref/set by unknown
subprograms)

This section lists all variables that are declared and referenced but never set. They are
referenced in unknown fashion, and the parser is unable to determine whether they are
set or just referenced in these locations.

Restrictions:
Variables marked with the absolute directive are not examined. These identifiers shadow
another variable in memory, and are changed whenever the other variable changes.

Recommendation:
Examine why these variables are referenced, but never set. False warnings may be
generated in some cases for null-terminated strings, where the actual pointer (PChar) is
not set, but when the contents of the buffer pointed to is indeed changed.

__

WARN5-Variables that are set, but never referenced

This is a list of all variables that are set but never referenced. Either these variables are
unnecessary or something is missing in the code, because it is meaningless to set a
variable and then never reference, or use it.

Restrictions:
Variables marked with the absolute directive are not examined. These identifiers shadow
another variable in memory, and are changed whenever the other variable changes.

Recommendation:
Examine why these variables are set, but never referenced.

__

WARN6-Variables that are set, but possibly never referenced (ref/set by unknown
subprograms)

This is a list of all variables that are set but never referenced. The variables are
referenced in unknown fashion, and the parser cannot determine whether they are set or
just referenced in these locations. They are either unnecessary or something is missing in
the code, because it is meaningless to set a variable and then never reference, or use it.

Restrictions:
Variables marked with the absolute directive are not examined. These identifiers shadow
another variable in memory, they are changed whenever the other variable changes.

Recommendation:
Examine why these variables are set, but never referenced. Also, try to make more
source code available to PAL.

__

Pascal Analyzer86

Copyright © 2001-2025 Peganza

WARN7-Local variables that are referenced before they are set

This is a list of all local variables that are referenced before they are set. Probably this is
an error, because the values of these identifiers are undefined before they are set. An
exception is long strings that are not examined, because they are implicitly initialized
upon creation.

Restrictions:
Variables marked with the absolute directive are not examined. These identifiers shadow
another variable in memory, they are changed whenever the other variable changes.

Recommendation:
Examine why these variables are referenced before they are set.

Example:

Pascal Analyzer also examines local subprograms that are called. Consider this scenario:

Example:

This code triggers a warning, because the local variable I is first referenced by InnerProc.

Reports 87

Copyright © 2001-2025 Peganza

The call to InnerProc occurs before I is set in the main body of Proc. Even if I is only
referenced when Condition evaluates to True (in InnerProc), this must happen at some
occasion, otherwise that check would be pointless.

A usual situation which triggers this warning is when an non-initialized variable is passed
as a parameter to a function. The function signature declares the parameter as a
var-parameter. Changing the parameter to an out-parameter (if possible), avoids this
warning.

__

WARN8-Local variables that may be referenced by unknown subprogram before they are set

This is a list of all local variables that are referenced before they are set. They are
referenced in unknown fashion, and the parser cannot determine whether they are set or
just referenced in these locations. Probably this is an error because the values of these
identifiers are undefined before they are set. An exception is long strings that are not
examined, because they are implicitly initialized to empty strings when created.

Restrictions:
Variables marked with the absolute directive are not examined. These identifiers shadow
another variable in memory, they are changed whenever the other variable changes.

Example:

__

WARN9-Var parameters that are used, but never set

This is a list of all var parameters that are used but never set in the subprogram they
belong to. Although this is not an error, it may be an indication that something is wrong
with your code. Otherwise, you may omit the var keyword, or change it to a const
parameter.

Example:

Pascal Analyzer88

Copyright © 2001-2025 Peganza

Restrictions:
Parameters to event handlers are not reported.

__

WARN10-Var parameters that are used, but possibly never set (ref/set by unknown
subprograms

This is a list of all var parameters that are used but never set in the subprogram they
belong to. They are referenced in unknown fashion, and the parser cannot determine
whether they are set or just referenced in these locations. Although this is not an error, it
may be an indication that something is wrong with your code. Otherwise, you may omit
the var keyword, or change it to a const parameter.

Example:

Restrictions:
Parameters to event handlers are not reported.

__

WARN11-Value parameters that are set

This is a list of all value parameters that are set in the subprogram they belong to.
Although this is permitted by the compiler, it may not be what you intended. If you want
to really change the variable, use the var directive instead.

Example:

Reports 89

Copyright © 2001-2025 Peganza

__

WARN12-Value parameters that are possibly set (ref/set by unknown subprogram)

This is a list of all value parameters that are set in the subprogram they belong to. They
are referenced in unknown fashion, and the parser cannot determine whether they are
set or just referenced in these locations. Although this is permitted by the compiler, it
may not be what you intended. If your intention is to really change the variable, use the
var directive instead.

Example:

__

WARN13-Interfaces passed as parameters without "const" directive

This is a list of all parameters that are of interface type and passed without "const"
directive.
Omitting the "const" directive may cause problems with the reference counting for
interfaces.

__

WARN14-Variables with absolute directive

This is a list of all variables that are declared with the absolute directive keyword. You
should watch these variables carefully, since they may potentially overwrite memory.

Example:

Pascal Analyzer90

Copyright © 2001-2025 Peganza

Recommendation:
Examine absolute variables carefully, and make sure that they do not overwrite memory.

__

WARN15-Constructors/destructors without calls to inherited

This is a list of all constructors and destructors that never call their inherited
constructor/destructor. This call is often required. so that the object can be correctly
created or destroyed. For a class descending directly from TObject, the inherited call in
the constructor is not needed, since the constructor in TObject does not actually do
anything. There is no guarantee though that the constructor will be empty in future
versions. If the constructor/destructor does not call inherited itself, but calls another
constructor/destructor that calls inherited, there will be no warning.

Recommendation:
Call the inherited constructor as the first statement in the constructor, and as the last
statement in the destructor.

__

WARN16-Destructors without override directive

This is a list of all destructors that miss the override directive keyword. Normally this
directive must be set, or a call to the Free method would never be successful. This is
because Free calls the destructor.

Limitation:
Not examined for Borland Pascal 7. For other targets, old-style objects are never
reported, because in this case the override keyword is not allowed.

__

WARN17-Classes with more than one destructor

This is a list of all classes that have more than one destructor declared. To declare more
than one destructor is usually pointless and should be avoided.

__

WARN18-Function result not set

This is a list of all functions where the result value is not always set. It may be set for
some but not all possible code paths. Although this is acceptable for the compiler, it
implies an error in the code. Maybe the function could be implemented as a procedure
instead, if the result value is not needed.

Functions that return long strings are not examined. Those strings are zero-initialized by
the function.

Recommendation:
Check these functions and examine if they should be implemented as procedures instead.

Reports 91

Copyright © 2001-2025 Peganza

__

WARN19-Recursive subprograms

This is a list of all subprograms (procedures and functions) that are recursive (call
themselves). Recursive subprograms are difficult to implement, and should be given
extra attention.

Recommendation:
Check these subprograms and make sure that they cannot fall into infinite recursion.

__

WARN20-Dangerous Exit-statements

This is a list of all locations with dangerous Exit-statements. These Exit-statements may
leave a whole block of code that is never executed (dead code). Every unconditional (not
within an if-statement) Exit-statement is considered dangerous in this respect.
Exit-statements within except-blocks are considered as safe, however.

There are situations when a developer inserts Exit-commands just for testing purposes,
for example to quit a function without executing a block of code. This report section
catches those locations where the Exit-commands have not been removed.

Example:

__

WARN21-Dangerous Raise

This is a list of all locations with dangerous raise commands. These raise-commands may
leave a whole block of code that is never executed (dead code). Every unconditional (not
within an if-statement) raise-command is considered dangerous in this respect.
Raise-commands within except-blocks are considered as safe, however.

There are situations when a developer inserts raise-commands just for testing purposes,
for example to quit a function without executing a block of code. This report section
catches those locations where raise-commands have not been removed.

Example:

Pascal Analyzer92

Copyright © 2001-2025 Peganza

__

WARN22-Dangerous Label-locations inside for-loops

This is a list of all locations with dangerous goto-labels. These labels are located inside for
-loops. In the case of a for-loop, this is especially dangerous, since the loop variable will
have an undefined value.

Example:

__

WARN23-Dangerous Label-locations inside repeat/while-loops

This is a list of all locations with dangerous goto-labels. These labels are located inside
repeat/while-loops. If the loop counter is considered, this may work just fine, but these
labels should be given extra attention.

Example:

Reports 93

Copyright © 2001-2025 Peganza

__

WARN24-Possible bad object creation

This is a list of all locations in the code where an object possibly is created in a bad
fashion.

Example:

This is an error!

Example:

PAL reports this as an error, since the reference to the new object is not assigned to a
variable. It could possibly be a mistake. However, in a situation where the object is
inserted into a list managed by “Parent”, it is not a mistake. This is the case for the
common TTreeView control.

Limitation:
Not examined for Borland Pascal 7. For other targets, old-style objects are never

Pascal Analyzer94

Copyright © 2001-2025 Peganza

reported, because in this case the override keyword is not allowed.

__

WARN25-Bad thread-local variables

This is a list of all thread-local variables (declared with the “threadvar” keyword) with
bad declarations. Reference-counted variables (such as long strings, dynamic arrays, or
interfaces) are not thread-safe and should not be declared with “threadvar”. Also, do not
create pointer- or procedural-type thread variables.

Limitation:
Not examined for Borland Pascal 7 and Delphi 1

Example:

__

WARN26-Instance created of class with abstract methods

This is a list of all locations where instances of classes with abstract methods are created.
Such classes should serve as ancestor classes only.

Example:

__

WARN27-Empty code blocks and short-circuited statements

This is a list of all empty code blocks and short-circuited statements. Short-circuited
statements are of these kinds:

Example:

Reports 95

Copyright © 2001-2025 Peganza

These statements may be mistakes.

WARN28-Empty case labels

Example:

The first case-branch is empty, which may be a mistake.

__

WARN29-Short-circuited for-statements

Example:

__

WARN30-Short-circuited if/case-statements

Example:

Also short-circuited else-branches are reported, both in if- and case-statements.

__

WARN31-Short-circuited on-statements

Example:

__

WARN32-Short-circuited repeat-statements

Pascal Analyzer96

Copyright © 2001-2025 Peganza

Example:

__

WARN33-Short-circuited while-statements

Example:

__

WARN34-Empty except-block

Example:

__

WARN35-Empty finally-block

Example:

__

WARN36-Forward directive in interface

Even if a forward directive is allowed by at least some versions of the Pascal/Delphi
compiler, they are unnecessary and should be avoided.

__

WARN37-Empty subprogram parameter list

Somewhat surprisingly, this code is accepted by at least some versions of the
Pascal/Delphi compiler:

Example:

Reports 97

Copyright © 2001-2025 Peganza

__

WARN38-Ambiguous references in with-blocks

This section reports locations where a valid references to an identifier inside a with-block
could be mixed up with another identifier declared in the same scope. It is not an error,
but just means that you should check that the code does what you intended.

Example:

The record field referenced in the with-block could be mixed up with the global Title.
Maybe the programmer instead intended to set the global Title identifier.

__

WARN39-Classes without overrides of abstract methods

This section lists classes that do not override abstract methods in ancestor classes. If a
method is declared abstract in an ancestor class, it must be overridden in descendant
classes. Otherwise, calling the method for the descendant class will result in a runtime
error.

__

WARN40-Local for-loop variables read after loop

This section lists for-loop variables that are read in code after the loop. Their values are
undefined, and thus it is not recommended to use their values.

Pascal Analyzer98

Copyright © 2001-2025 Peganza

__

WARN41-Local for-loop variables possibly read after loop

This section lists for-loop variables that possibly are read in code after the loop. Their
values are undefined, and thus it is not recommended to use their values.
__

WARN42-For-loop variables not used in loop

When a for-loop variable is not used in the loop, it may be a coding error.
__

WARN43-Non-public constructors/destructors

This section lists constructors/destructors that are non-public.
__

WARN44-Functions called as procedures

This section lists locations in the source code where functions are called as procedures,
that is without using the result value. Maybe this is a coding error, and the function
should really be called as a function instead.
__

WARN45-Mismatch property read/write specifiers

This section lists property declarations with mismatch between read/write specifiers, like

This is probably a coding error.

__

WARN46-Local variables that are set but not later used

This section lists local variables that are set but not later used further down in the code,
like

Reports 99

Copyright © 2001-2025 Peganza

__

WARN47-Duplicate lines

This section lists locations in the source code where a line is duplicated, that is when two
lines immediately following each other, have the same content.

The check is done without case-sensitivity, so ...

.. are considered to be duplicate.

But for differences within string literals, the lines below..

.. in the case-structure are considered NOT to be duplicate.

__

WARN48-Duplicate class types in except-block

Pascal Analyzer100

Copyright © 2001-2025 Peganza

This section lists locations in the source code where an except-block contains more than
one handler for the same class type.
Like in this code:

__

WARN49-Redeclared identifiers from System unit

This section lists identifiers that use the same name as an identifier from the System.pas
unit for the compiler target.
Although allowed, at least it is a source for confusion when maintaining the code.

__

WARN50-Identifier with same name as keyword/directive

This section reports identifier with names that conflict with keywords/directives.
Although allowed, is a source for confusion when maintaining the code, and sharing it
with others.

__

WARN51-Out parameter is read before set, or never set

This section reports parameters marked with the "out" directive that are read before set
in the function/procedure, or never set.
An "out" parameter is just a placeholder for a return value. The function should not
assume that its initial value has any meaning.

__

WARN52-Possible bad assignment

Reports 101

Copyright © 2001-2025 Peganza

This section reports occurrences of assignments to smaller from bigger, possibly resulting
in data loss.
It will also report situations where for example UInt32 is assigned to Int32, where the
range of the types do not fully overlap.

Example:

__

WARN53-Mixing interface variables and objects

This section reports locations in your code with assignments between objects and
interface variables. Normally, unless you really know what you are doing, it is a bad idea
to mix interfaces and objects. The reason is that the reference counting mechanism of
interfaces can be disturbed, leading to access violations and/or memory leaks.

Example:

__

WARN54-Set before passed as out parameter

Pascal Analyzer102

Copyright © 2001-2025 Peganza

This section reports locations in your code where a variable is set and then passed as an
"out" parameter to a function.

Because the "out" parameter will be set in the called function without being read first, it
is at least pointless to set it before it is passed. It may also indicate some
misunderstanding about the code.

It is recommended to check if it is meaningful to set the variable before passing it. If not,
remove the assignment, or else modify the signature of the called function from "out" to
"var".

Example:

See also our blog article about out parameters.

__

WARN55-Redeclares ancestor member, or method in helped class/record

This section lists class fields or methods that redeclare ancestor members with the same
name. This may lead to confusion about which member is actually referenced.
Also reported is when a helper class/record redeclares a method that exists in the helped
class/record. The helper method will take precedence.

Example of redeclared ancestor members:

http://peganza.com/get-out-different-parameter-types.html

Reports 103

Copyright © 2001-2025 Peganza

__

WARN56-Parameter to FreeAndNil is not an object

This section reports locations in your code where FreeAndNil takes a parameter which is
not an object, for example an interface variable. This may lead to access violations.
Unlike Free, the compiler will not complain.

Example:

Note, that starting with Delphi 10.4 it is much harder to produce this warning, because
FreeAndNil only accepts parameter based on TObject.
It is still however possible to produce the error, for example with code like:

FreeAndNil(TObject(IAnyInterface))

__

Pascal Analyzer104

Copyright © 2001-2025 Peganza

WARN57-Enumerated constant missing in case structure

This section lists locations in your code where a case statement does not list all possible
values of an enumerated type. This is probably most often as intended, but it may also
point out an error in the code.

Example:

In the code above, cpKing is missing from the case structure, and will trigger a warning.

If you want to suppress warnings for a case-structure, just use PALOFF on the same line
as the "case" keyword.

__

WARN58-Mixed operator precedence levels

This section lists locations in your code where operators of different levels are mixed.
Operators are in Object Pascal evaluated from left to right, unless parentheses are used.
Operators of level 1 are evaluated before operators of level 2 etc.

Level 1: @, not
Level 2: *, /, div, mod, and, shl, shr, as
Level 3: +, -, or, xor
Level 4: =, <>, <, >, <=, >=, in, is

Example:

Reports 105

Copyright © 2001-2025 Peganza

Mixing operators is perfectly valid but you will find that your code is clearer and easier to
understand if you insert parentheses. Then you do not have to think about operator
precedence.

__

WARN59-Explicit float comparison

This section lists locations in your code where floating point numbers are directly
compared. It is considered not secure to compare floating numbers directly. Instead use
functions in Delphi's System.Math unit, like IsZero and SameValue.

Example:

In the example above, use instead SameValue function from System.Math unit.

__

WARN60-Condition evaluates to constant value

This section lists locations in your code where a condition evaluates to a constant value.

Example:

Pascal Analyzer106

Copyright © 2001-2025 Peganza

__

WARN61-Assigned to itself

This section lists locations in your code where a variable has been assigned to itself.
Even if this assignment is harmless, it makes no sense. It may indicate other problems
with the code, so you should check the surrounding code.

__

WARN62-Possible orphan event handler

This section lists class procedures in your code that look like event handlers. But they are
not connected to any control in the corresponding DFM-file.

This section is analyzed only if DFM files are found.

__

WARN63-Mismatch 32/64-bits

This section reports locations where 32-bits (or smaller) variables are passed as 64-bits
parameters (or vice versa).
In many cases this is totally harmless, but consider the case where a 32-bits pointer is
passed to a function that expects a 64-bits pointer.
Also if there is a mismatch when assigning values, it will be reported.

See also:

 General Reports

14.2.4 Optimization Report

Targets: All

This report pinpoints elements of the code that you can improve, resulting in better
performance. With better performance, we here mean faster execution, not necessarily

Reports 107

Copyright © 2001-2025 Peganza

smaller code.

Sections:

OPTI1-Missing “const” for unmodified string parameter
OPTI2-Missing “const” for unmodified record parameter
OPTI3-Missing "const" for unmodified array parameter
OPTI4-Array properties that are referenced/set within methods
OPTI5-Virtual methods (procedures/functions) that are not overridden

OPTI6-Local subprograms with references to outer local variables
OPTI7-Subprograms with local subprograms
OPTI8-Parameter is "var", can be changed to "out"
OPTI9-Inlined subprograms not inlined because not yet implemented
OPTI10-Managed local variable can be declared inline
OPTI11-Managed local variable is inlined in loop

OPTI1-Missing “const” for unmodified string parameter

This is a list of all string parameters that you can declare with the const directive,
resulting in better performance since the compiler can assume that the parameter will
not be changed. For example, for a long string the reference count for the string does not
need to be updated on entry and exit to the function. For other types of strings, like
WideString, the string may have to be copied when passed to the function.

Example:

In this case, the parameter S should have the const directive, since it is never changed in
the procedure. The compiler can generate code that is more efficient.

No warning is given for methods that are marked with the "override" directive. This is
because they must follow the parameter list that the overridden method has.

__

OPTI2-Missing “const” for unmodified record parameter

This is a list of all record parameters that you can declare with the const directive,
resulting in better performance since the compiler can assume that the parameter will
not be changed. Generally, if the parameter is larger than 4 bytes, and it doesn't need to
be altered in the subroutine, const is more efficient. Also, it is a good idea to use CONST
on parameters that aren't intended to be altered, so the compiler can catch those errors

Pascal Analyzer108

Copyright © 2001-2025 Peganza

for you.

Example:

In this case, the parameter R should have the const directive, since it is never changed in
the procedure. The compiler can generate code that is more efficient.

No warning is given for methods that are marked with the "override" directive. This is
because they must follow the parameter list that the overridden method has.

__

OPTI3-Missing "const" for unmodified array parameter

This is a list of all array parameters that you can declare with the const directive,
resulting in better performance since the compiler can assume that the parameter will
not be changed.

No warning is given for methods that are marked with the "override" directive. This is
because they must follow the parameter list that the overridden method has.

__

OPTI4-Array properties that are referenced/set within methods

This is a list of all array properties that are referenced or set within methods of a class.
Methods that include a reference to the property are listed.

For performance reasons it is faster to directly access the private array field. However, if
the Get- or Set-method performs side effects, it makes sense to access the property.

For simple non-array properties, the compiler generates the same code for both access of
the property or the field. Therefore, for normal properties there is no advantage in
referencing the private field.

Example:

Reports 109

Copyright © 2001-2025 Peganza

__

OPTI5-Virtual methods (procedures/functions) that are not overridden

This is a list of all methods that are declared as virtual, but that never are overridden.
Since virtual methods have slightly worse performance than static methods, it is better to
change these methods to static ones instead.

This section is also generated for multi-projects.

Recommendation:

Examine if these methods should really be overridden. If they belong to a base class, you
should probably keep them virtual, so descendant classes can create their own
implementations.

__

Pascal Analyzer110

Copyright © 2001-2025 Peganza

OPTI6-Local subprograms with references to outer local variables

This section shows nested local procedures, with references to outer local variables.
Those local variables require some special stack manipulation so that the variables of the
outer routine can be seen by the inner routine. This results in a good bit of overhead.

__

OPTI7-Subprograms with local subprograms

This section lists subprograms that themselves have local subprograms. Especially when
these subprograms share local variables, it can have a negative effect on performance.

__

OPTI8-Parameter is "var", can be changed to "out"

This section lists parameters that are marked with the "var" directive, but that can be
changed to "out".
Even if it may not improve performance, it improves the readability of the code and
makes its intentions clearer.

__

OPTI9-Inlined subprograms not inlined because not yet implemented

This section lists calls to inlined subprograms, where the subprogram will not be inlined.
The reason is that the subprogram has not been implemented yet. It is implemented
further down in the same module. There are a number of other conditions that also must
be fulfilled for the subprogram to be inlined.

Reports 111

Copyright © 2001-2025 Peganza

To make the subprogram inlined for this call, make sure that it is implemented higher up
in the same module.

OPTI10-Managed local variable can be declared inline

Pascal Analyzer112

Copyright © 2001-2025 Peganza

This section lists local variables that instead of being declared in the main var-section,
can be declared inline.
Doing so optimizes the initialization-finalization code that is executed, and now only
needs to be done when certain conditions are fulfilled.

Managed variables are strings, interfaces, dynamic arrays and records that contain
managed fields.

Inline variable declarations were introduced in Delphi 10.3, so this report section is not
relevant for older targets.

OPTI11-Managed local variable is inlined in loop

This section lists local variables that instead of being declared in the main var-section,
are declared inline.
They are declared inside a loop, which decreases performance. The reason is that
initialization-finalization of the variable has to be done for each loop iteration.

Managed variables are strings, interfaces, dynamic arrays and records that contain
managed fields.

Inline variable declarations were introduced in Delphi 10.3, so this report section is not
relevant for older targets.

See also:

 General Reports

14.2.5 Code Reduction Report

Targets: All

This report pinpoints unnecessary code that could be deleted, resulting in a smaller
amount of code to maintain and search for errors.

Sections:

REDU1-Identifiers never used
REDU2-Local identifiers only used at a lower scope
REDU3-Local identifiers only used at a lower scope, but in more than one subprogram
REDU4-Local identifiers that are set and referenced once
REDU5-Local identifiers that possibly are set and referenced once

REDU6-Local identifiers that are set more than once without referencing in-between
REDU7-Local identifiers that possibly are set more than once without referencing
in-between
REDU8-Class fields that are zero-initialized in constructor
REDU9-Class fields that possibly are zero-initialized in constructor
REDU10-Local long strings that are initialized to empty string

Reports 113

Copyright © 2001-2025 Peganza

REDU11-Local long strings that possibly are initialized to empty strings
REDU12-Functions called only as procedures (result ignored)
REDU13-Functions/procedures (methods excluded) only called once
REDU14-Methods only called once from other method of the same class
REDU15-Unneeded boolean comparisons

REDU16-Boolean assignment can be shortened
REDU17-Fields only used in single method
REDU18-Consider using interface type
REDU19-Redundant parentheses
REDU20-Common subexpression, consider elimination

REDU21-Default parameter values that can be omitted
REDU22-Inconsistent conditions
REDU23-Typecasts that possibly can be omitted
REDU24-Local identifiers never used

REDU1-Identifiers never used

This is a list of all identifiers that are declared but never used. The Delphi compiler (from
Delphi 2) also reports this if warnings ($W+) have been turned on during compilation.
Most often, you can remove these identifiers. If you remove any identifier, make sure
your code still compiles and works properly. A wise habit is to first comment out these
declarations, and remove them entirely when you have validated that the code still
compiles and works as intended. Also, note that if a subprogram is not used, does not
necessarily indicate that it is not needed at all. If it is part of a general unit, the
subprogram could very well be used in other applications.

Identifiers (parameters, local variables etc) related to subprograms that are not used, are
not reported.

Constructors/destructors are not examined by this section. Also parameters to event
handlers, or methods that are referenced in form files, are not reported as unused. The
reason is to avoid unnecessary warnings.

Also unused methods of a class that are implemented through interfaces are not
reported. In this case, the class has no choice but to implement these methods.

Example:

In this case, the parameter Sender is not reported as unused, since mnuOpen is an event
handler.

This section is also generated for multi-projects.
__

Pascal Analyzer114

Copyright © 2001-2025 Peganza

REDU2-Local identifiers only used at a lower scope

This is a list of all local identifiers that are only used at a lower scope, in nested
subprograms. You can declare these identifiers in the local procedures/functions where
they are actually used.

Example:

__

REDU3-Local identifiers only used at a lower scope, but in more than one subprogram

This is a list of all local identifiers that are only used at a lower scope, in nested
subprograms. You can probably declare these identifiers in the local procedures/functions
where they are actually used, unless they should be shared by the nested subprograms.

Example:

Reports 115

Copyright © 2001-2025 Peganza

__

REDU4-Local identifiers that are set and referenced once

This is a list of all local identifiers that are set and referenced just once. It may be more
efficient to skip these intermediate identifiers.

Restrictions:
Identifiers that are first set as a var parameter in a call to a subprogram, and afterwards
referenced, are not reported. Also, when the identifier is referenced in a loop, it is not
reported.

Example:

__

REDU5-Local identifiers that possibly are set and referenced once

Pascal Analyzer116

Copyright © 2001-2025 Peganza

This is a list of all local identifiers that possibly are set and referenced just once. They are
referenced in unknown fashion, and the parser cannot determine whether they are set or
just referenced in these locations. It may be more efficient to skip this intermediate
identifier.

Restrictions:
Identifiers that are first set as a var parameter in a call to a subprogram, and afterwards
referenced, are not reported. Also, when the identifier is referenced in a loop, it is not
reported.

Example:

__

REDU6-Local identifiers that are set more than once without referencing in-between

This is a list of all local identifiers that are set (assigned) more than once without
referencing in-between. You can probably remove all but the last assignment. It may of
course also indicate a coding error.

Example:

__

REDU7-Local identifiers that possibly are set more than once without referencing in-between

Reports 117

Copyright © 2001-2025 Peganza

This is a list of all local identifiers that are set (assigned) more than once without
referencing in-between. They are referenced in unknown fashion, and the parser cannot
determine whether they are set or just referenced in these locations. You can probably
delete all but the last assignment.

Example:

__

REDU8-Class fields that are zero-initialized in constructor

This is a list of all class fields that are zero-initialized in constructor. Since class fields are
automatically zero-initialized when the object is created, there is usually no need to
include this code.

Example:

Pascal Analyzer118

Copyright © 2001-2025 Peganza

__

REDU9-Class fields that possibly are zero-initialized in constructor

This is a list of all class fields that possibly are zero-initialized in constructor. They are
referenced in unknown fashion, and the parser cannot determine whether they are set or
just referenced in these locations. Since class fields are automatically zero-initialized
when the object is created, there is usually no need to include this code.

Example:

__

REDU10-Local long strings that are initialized to empty string

(Not relevant for BP7 and D1)

This is a list of all local long strings that are initialized to empty strings. An unnecessary
action, since long strings are automatically initialized as empty strings upon creation.

Example:

__

REDU11-Local long strings that possibly are initialized to empty strings

(Not relevant for BP7 and D1)

Reports 119

Copyright © 2001-2025 Peganza

This is a list of all local long strings that are initialized to empty strings. They are
referenced in unknown fashion, and the parser cannot determine whether they are set or
just referenced in these locations. An unnecessary action, since long strings are
automatically initialized as empty strings upon creation.

Example:

__

REDU12-Functions called only as procedures (result ignored)

These functions may possibly better be implemented as procedures, because the result is
never used.

This section is also generated for multi-projects.

__

REDU13-Functions/procedures (methods excluded) only called once

The code in these functions/procedures could possibly be included inline instead,
avoiding an unnecessary call.

This section is also generated for multi-projects.

__

REDU14-Methods only called once from other method of the same class

These methods are never called from the outside. The code in these methods could
possibly be included inline instead, avoiding an unnecessary call.

This section is also generated for multi-projects.

__

REDU15-Unneeded boolean comparisons

This list contains locations with statements like

if bReady = true then

This could be shorter and better written as

Pascal Analyzer120

Copyright © 2001-2025 Peganza

if bReady then

__

REDU16-Boolean assignment can be shortened

This list contains locations with statements like

This could be shorter and better written as

__

REDU17-Fields only used in single method

This list contains class or record fields that are only used in a single method. They could
probably better be declared as local variables.

__

REDU18-Consider using interface type

This list contains objects which can be declared and implemented as an interface type,
instead of as the class type implementing the interface. The advantage is that interface
reference counting can be used so you will not have to explicitly free the object.

Example:

Reports 121

Copyright © 2001-2025 Peganza

The list will not include objects that are not created. These objects are probably just
assigned to another object.
Another condition that must be met is that the object is of a class that implements
exactly one interface.

__

REDU19-Redundant parentheses

This section lists locations in your code where superfluous parentheses can be removed,
simplifying the code.

__

REDU20-Common subexpression, consider elimination

This section lists locations in your code with repeated common subexpressions. Those
may be candidates to put into temporary variables to simplify and optimize the code.

Example:

If any of the variables involved in the repeated expressions would have been modified,
between the locations, there should not be any warning.

REDU21-Default parameter values that can be omitted

Pascal Analyzer122

Copyright © 2001-2025 Peganza

This list contains calls to functions or procedures that use default parameters, and where
the parameter can be omitted at the call site. The reason is then that the value of the
parameter passed is the same as the default parameter value.

Example:

REDU22-Inconsistent conditions

This section reports locations with inconsistent conditions. These are places where a
condition check is repeated, even if the outcome will be the same as in the previous
location.

Example:

REDU23-Typecasts that possibly can be omitted

This section reports locations with typecasts that possibly can be omitted. It is locations
where the typecast casts the variable to the same type that it already has.

Example:

Reports 123

Copyright © 2001-2025 Peganza

REDU24-Local identifiers never used

This a list of all local identifiers that are declared but never used. It is actually a subset of
the REDU1 report section, which reports all identifiers, not only local.

See also:

 General Reports

14.2.6 Memory Report

Targets: All except BP7

The Memory Report helps you find possible memory leaks in your code.

Sections:

MEMO1-Local objects with unprotected calls to Free
MEMO2-Non-local objects with unprotected calls to Free
MEMO3-Objects created in try-structure
MEMO4-Unbalanced Create/Free
MEMO5-Local objects that are created more than once without being freed in-between

MEMO6-Local objects that are referenced before being created
MEMO7-Local objects that are referenced after being freed
MEMO8-Created and freed objects

MEMO1-Local objects with unprotected calls to Free

This section reports locations where calls to Free (and FreeAsNil or Release) are not done
in try-finally blocks. Failure to wrap a try-finally block around a memory deallocation
could result in a memory leak. The report does not list locations in FormDestroy and
FormClose events, because these are normally called when a form is destroyed. Neither
does it report calls to Free from a finalization block. Also an object that is freed in a
try-except block is not reported.

Pascal Analyzer124

Copyright © 2001-2025 Peganza

__

MEMO2-Non-local objects with unprotected calls to Free

Like the previous section, but for non-local objects.

__

MEMO3-Objects created in try-structure

This section lists lists locations where an object is created inside a try-structure, like:

Here, Obj should be created before the “try”, otherwise Obj.Free will be called even if the
object fails to create, possibly causing a runtime error.

__

MEMO4-Unbalanced Create/Free

This section reports objects that are not created and freed the same number of times.
This can indicate an error, like in the following example:

Here, the locally declared object Obj is never freed, so this code will cause a memory
leak.

__

MEMO5-Local objects that are created more than once without being freed in-between

This section reports objects that are created more than once (in a row) without being
freed in-between.
This leads to memory leakage, like in the following example:

Reports 125

Copyright © 2001-2025 Peganza

Here, the locally declared object Obj is only freed once, which causes a memory leak.

__

MEMO6-Local objects that are referenced before being created

This section reports objects that are referenced before being created.
This leads to an exception, like in the following example:

Objects that PAL cannot determine have been created at all, are not reported, only those
cases where the object has been created further down in the code. Otherwise there
should be many false positives.
__

MEMO7-Local objects that are referenced after being freed

This section reports objects that are freed but referenced further down in the code.
This leads to an exception, like in the following example:

Pascal Analyzer126

Copyright © 2001-2025 Peganza

__

MEMO8-Created and freed objects

This section reports objects and where they are created and freed. Use this for reference
and to check that objects are freed.

See also:

 General Reports

14.2.7 Convention Compliance Report

Targets: All

This report contains several lists with identifiers that do not comply with conventions for
naming of identifiers.

The choice of names for identifiers has a considerable influence on the ease of
understanding and maintenance costs of your source code. Developers familiar with the
coding standards can understand the code more easily if it follows general conventions.

Sections:

CONV1-Ordinary types that do not start with "T"
CONV2-Exception types that do not start with "E"
CONV3-Pointer types that do not start with "P"
CONV4-Interface types that do not start with "I"
CONV5-Class fields that are not declared in the private section

CONV6-Class fields that are exposed by properties (read/write) but do not start with "F"
CONV7-Properties to method pointers that do not start with "On/Before/After"
CONV8-Functions that are exposed by properties (read) but do not start with "Get"
CONV9-Procedures that are exposed by properties (write) but do not start with "Set"
CONV10-Classes that have visible constructors with bad names

Reports 127

Copyright © 2001-2025 Peganza

CONV11-Classes that have visible destructors with bad names
CONV12-Identifiers that have unsuitable names
CONV13-Multiple with-variables
CONV14-Property access methods that are not private/protected
CONV15-Hard to read identifier names

CONV16-Label usage
CONV17-Bad class visibility order
CONV18-Identifiers with numerals
CONV19-Local identifiers that "shadow" outer scope identifiers
CONV20-Local identifiers that "shadow" class members

CONV21-Class/member name collision
CONV22-Class fields that are not declared in the private/protected sections
CONV23-Class fields that do not start with "F"
CONV24-Value parameters that do not start with selected prefix
CONV25-Const parameters that do not start with selected prefix

CONV26-Out parameters that do not start with selected prefix
CONV27-Var parameters that do not start with selected prefix
CONV28-Old-style function result
CONV29-With statements
CONV30-Private can be changed to strict private

CONV31-Protected can be changed to strict protected
CONV32-Multiple statements on the same line

CONV1-Ordinary types that do not start with "T"

This is a list of all ordinary types that do not start with the letter “T”. Exception, pointer
and interface types are not included. As a convention, user-defined type names start with
the letter “T”. A class that is a CoClass is an exception and is not reported. PAL assumes
a CoClass when the name of the class starts with the letters “Co”. Furthermore, the class
must have a class function with the name “Create”.

Also custom attributes inheriting from TCustomAttribute are not reported.

__

CONV2-Exception types that do not start with "E"

This is a list of all exception types that do not start with the letter “E”. As a convention,
user-defined exception type names start with the letter “E”.

__

CONV3-Pointer types that do not start with "P"

This is a list of all pointer types that do not start with the letter “P”. As a convention,
user-defined pointer type names start with the letter “P”.

Pascal Analyzer128

Copyright © 2001-2025 Peganza

__

CONV4-Interface types that do not start with "I"

This is a list of all interface types that do not start with the letter “I”. As a convention,
user-defined interface type names start with the letter “I”.

__

CONV5-Class fields that are not declared in the private section

This is a list of all class fields that are not declared in the private section of a class.

__

CONV6-Class fields that are exposed by properties (read/write) but do not start with "F"

This is a list of all class fields that are exposed by properties but do not start with the
letter “F”. As a convention, private class field names start with the letter “F”.

This section is similar to CONV23, but that section reports all fields, not only those
exposed as properties.

__

CONV7-Properties to method pointers that do not start with "On/Before/After"

This is a list of all properties to method pointers that do not start with "On/Before/After"

__

CONV8-Functions that are exposed by properties (read) but do not start with "Get"

This is a list of all functions that are exposed by properties read methods, but do not
start with “Get”. As a convention, these functions (methods) should start with the letters
“Get” (e g GetIndex, GetBitmap).

__

CONV9-Procedures that are exposed by properties (write) but do not start with "Set"

This is a list of all functions that are exposed by properties write methods, but do not
start with “Set”. As a convention, these procedures (methods) should start with the
letters “Set” (e.g. SetIndex, SetBitmap).

__

CONV10-Classes that have visible constructors with bad names

This is a list of all classes that have constructors with bad names. As a convention,
constructor names start with the letters “Create”. For old-style objects (BP7), the

Reports 129

Copyright © 2001-2025 Peganza

constructor names start with the letters “Init”.

__

CONV11-Classes that have visible destructors with bad names

This is a list of all classes that have destructors with bad names. As a convention,
destructor names start with the letters “Destroy”. For
old-style objects (BP7), the destructor names start with the letters “Done”.

__

CONV12-Identifiers that have unsuitable names

This is a list of all identifiers with names that are the same as directives, e.g. “pascal”,
“dynamic”, “index” and others. Even if the compiler allows this, it may lead to
misunderstandings. For Delphi 1 and higher, the list also includes identifiers with
identical names as identifiers from the System unit (like “Copy”, “AllocMem”).

__

CONV13-Multiple with-variables
This is a list of all locations in the source where multiple with-variables (“with A, B do”)
are used. It is often considered a bad coding habit to use multiple with-variables, since
they make the source more difficult to understand.

__

CONV14-Property access methods that are not private/protected
This is a list of all property access methods that are not declared as private/protected.
Property access methods are used with properties, e. g:

property MyProp : integer read GetMyProp write SetMyProp

where GetMyProp and SetMyProp are property access methods.

Those methods should not be directly callable from the outside, because all access should
go through the associated property.

__

CONV15-Hard to read identifier names

This is a list of all identfiers with hard to read names. A name is considered hard to read
if it contains both the letter “O” and the number”0”, or both the letter “l” and the number
“1”.

__

CONV16-Label usage

This list contains all labels that are used in the source code. Labels define jump-locations
for a goto statement. Usage of labels and goto-statements is considered as a bad thing,

Pascal Analyzer130

Copyright © 2001-2025 Peganza

which is most often not needed in modern object-oriented programming. There are
situations though, when a label may be the right choice.

__

CONV17-Bad class visibility order

This list contains all class types with bad class visibility order in the declaration. Bad
order is defined as when private sections appear after public/protected sections or when
protected sections appear after public sections. The code is probably easier to understand
and maintain if a good visibility order is used.

Classes that PAL thinks are derived from TForm are not reported. This is because these
type of classes depend on a special order, starting with published identifiers.

__

CONV18-Identifiers with numerals

This list contains all identifiers with names that contain numerals.

__

CONV19-Local identifiers that "shadow" outer scope identifiers

This list contains local identifiers that have the same name as outer scope identifiers in
the same unit.

Example:

Although this is allowed, it may lead to confusion and misunderstandings when
maintaining the code.

__

CONV20-Local identifiers that "shadow" class members

This list contains local identifiers in methods that have the same name as a class
member.

Example:

Reports 131

Copyright © 2001-2025 Peganza

Although this is allowed, it may lead to confusion and misunderstandings when
maintaining the code.

__

CONV21-Class/member name collision

This section reports situations where class and member names collide.

__

CONV22-Class fields that are not declared in the private/protected sections

This is a list of all class fields that are not declared in the private/protected sections of a
class.
Fields should normally not be made "public". They should instead be accessed through
properties

__

CONV23-Class fields that do not start with "F"

This is a list of all class fields that not start with the letter “F”. As a convention, private
class field names start with the letter “F”.
Component fields in the DFM-file are not reported.

This section is similar to CONV6, but that section only reports field exposed as properties.

__

CONV24-Value parameters that do not start with selected prefix

This is a list of all value parameters that do not start with the selected prefix. Set the
prefix in the Reports tab page for the project. Double-click on the Convention Report,
select report section CONV24 and press the Prefix button to enter the prefix.

__

Pascal Analyzer132

Copyright © 2001-2025 Peganza

CONV25-Const parameters that do not start with selected prefix

This is a list of all const parameters that do not start with the selected prefix. Set the
prefix in the Reports tab page for the project. Double-click on the Convention Report,
select report section CONV25 and press the Prefix button to enter the prefix.

__

CONV26-Out parameters that do not start with selected prefix

This is a list of all out parameters that do not start with the selected prefix. Set the prefix
in the Reports tab page for the project. Double-click on the Convention Report, select
report section CONV26 and press the Prefix button to enter the prefix.

__

CONV27-Var parameters that do not start with selected prefix

This is a list of all var parameters that do not start with the selected prefix. Set the prefix
in the Reports tab page for the project. Double-click on the Convention Report, select
report section CONV27 and press the Prefix button to enter the prefix.

__

CONV28-Old-style function result

This is a list of functions where instead of "Result", the function name is used as the
result variable.

__

CONV29-With statements

This is a list of locations where "with" is used.

__

CONV30-Private can be changed to strict private

This is a list of class members that are private but can be changed to strict private.

__

CONV31-Protected can be changed to strict protected

Reports 133

Copyright © 2001-2025 Peganza

This is a list of class members that are protected but can be changed to strict protected.

__

CONV32-Multiple statements on the same line

This is a list of location where there are more than one statement on the same line.

See also:

 General Reports

14.2.8 Inconsistent Case Report

Targets: All

Sections:

INCA1-Inconsistent case for same identifier
INCA2-Inconsistent case for different identifiers with same name
INCA3-Mismatch unit name/file name

INCA1-Inconsistent case for same identifier

This is a list of the locations where the identifier is written with a different case compared
with the declaration.

Example:

__

INCA2-Inconsistent case for different identifiers with same name

This is a list of all identifiers with the same name, but that are declared with different
case.

Example:

Pascal Analyzer134

Copyright © 2001-2025 Peganza

__

INCA3-Mismatch unit name/file name

This is a list of all units with mismatch between the unit name and file name.

See also:

 General Reports

14.2.9 Prefix Report

Targets: All except BP7

This report contains a list with variables that have a different prefix than the defined
ones. For instance:

var
 Label1 : TLabel;

Assume that one defined prefix is ”lbl” for variables of type TLabel. The declared variable
Label1 will then be listed in the report, since it does not comply with this rule. Set rules
for prefixes in the Options dialog.

**
* Prefix Report for *
* C:\PROJEKT\WBT\WBTSTORE.DPR *
**

These variables do not have the right prefix (17):
--

CmdClose : TBitBtn ClassField WbtList\TListForm (17)
CmdDelete : TBitBtn ClassField WbtList\TListForm (16)
CmdEdit : TBitBtn ClassField WbtList\TListForm (15)
CmdHelp : TBitBtn ClassField GRtfMod\TModalRTFViewerForm (23)
CmdNew : TBitBtn ClassField WbtList\TListForm (14)
CmdPrint : TBitBtn ClassField GRtfMod\TModalRTFViewerForm (22)
CmdSaveAs : TBitBtn ClassField GRtfMod\TModalRTFViewerForm (21)

FButton : TOvcEdButton ClassField OvcBCalc\TOvcBorderEdPopup (61)
FButton : TOvcEdButton ClassField OvcEdPop\TOvcEdPopup (60)
FEdit : TOvcCustomEdit ClassField OvcBCalc\TOvcBorderEdPopup (60)
FEdit : TOvcCustomEdit ClassField OvcBordr\TOvcBorderParent (130)
FOvcEdit : TOvcNumberEditEx ClassField OvcBCalc\TOvcBorderedNumberEdit (139)
FOvcEdit : TOvcDateEditEx ClassField OvcBCldr\TOvcBorderedDateEdit (52)
FOvcEdit : TOvcEditEx ClassField OvcBEdit\TOvcBorderedEdit (49)

GroupBox1 : TGroupBox ClassField WbtQrCon\TQRFilterDialog (15)

Reports 135

Copyright © 2001-2025 Peganza

GroupBox2 : TGroupBox ClassField WbtQrCon\TQRFilterDialog (20)
GroupBox3 : TGroupBox ClassField WbtQrCon\TQRFilterDialog (24)

See also:

 General Reports

14.2.10 NextGen Readiness Report

Targets: All

This report measures how well prepared your code is for the NextGen compiler. It gives
you hints to help you rework your code so that it is compatible with the NextGen
compiler.

Sections:

NEXT1-Unsupported types
NEXT2-Except-block without call to non-inlined subprograms
NEXT3-Assembler code in these subprograms

N.B. From Delphi 10.4 this report is not so relevant. This is because the NextGen
compilers have been retired. All compilers now share the same old-fashioned
Delphi memory model that we all know.

There are currently three sections in this report:

NEXT1-Unsupported types

This is a list of identifiers with types that are not supported by the NextGen compiler.

NEXT2-Except-block without call to non-inlined subprograms

This is a list of except-blocks that do not call non-inlined subprograms. This is a
requirement for exceptions to work well with the NextGen compiler.

NEXT3-Assembler code in these subprograms

This is a list of subprograms containing assembler code. Assembler code is not supported
by the NextGen compiler.

See also:

 General Reports

Pascal Analyzer136

Copyright © 2001-2025 Peganza

14.3 Metrics Reports

The metrics reports are:

 Totals Report

 Module Totals Report

 Complexity Report

 Object-oriented metrics Report

See also:

Reports
All Reports

14.3.1 Totals Report

Targets: All

This report writes a table that summarizes the number of files, procedures, functions,
types etc, in the analyzed source code. It also shows how many of each category that are
global, interfaced and unused. Here is a small excerpt from such a table.

**
* Totals Report for *
* C:\PROJEKT\PSEARCH\PSEARCH.DPR *
**

Metrics:
--

Element Total Local Global Interfaced Unused

 Files 3 - - - -
 Modules 23 - - - -
 Lines 715 - - - -

 Constants 1 1 0 0 0
 Typed 0 0 0 0 0
 Resourcestring 0 0 0 0 0

 Types 1 0 1 1 0
 Simple/unknown 0 0 0 0 0
 Array 0 0 0 0 0
 Class 1 - 1 1 0
 Class ref 0 - 0 0 0
 Enumerated 0 0 0 0 0

Restrictions:
Only identifiers that are declared in code that is found and parsed are included in the
totals. It will include all identifiers, regardless if the folder where the code is found is
excluded for reporting.

To see the total number of lines for different source code directories, see the Complexity
Report.

You can set the option for “Details” in the Options dialog, to let PAL generate detailed

Reports 137

Copyright © 2001-2025 Peganza

information.

See also:

 Metrics Reports

14.3.2 Module Totals Report

Targets: All

This report writes the same type of tables as the Totals Report, but for each reported unit
in the analyzed project.

Restrictions:
Only identifiers that are declared in code that is found and parsed are included in the
totals.

You can set the option for “Details” in the Options dialog, to let PAL generate detailed
information.

See also:

 Metrics Reports

14.3.3 Complexity Report

Targets: All

Complexity per module/subprogram

This section lists a number of important metrics:

Total Lines
Lines of Code (LOC)
Comment Lines
Comments/Total Lines
Comments/Lines of Code (Comments/LOC)
Decision Points (DP)
Decision Points/Lines of Code (DP/LOC)
Characters/Lines of Code (Chrs/LOC)
Comment Characters/Characters

These metrics will help you evaluate source code in terms of understandability,
complexity, and reusability. Complex code is harder to maintain and is more error prone.
You can also locate complex subprograms that would be better split up.

Minimizing complexity is a major key to writing high quality code. Measure the
complexity regularly during development so complex code can be identified early and
rewritten to improve understanding and to reduce testing and future maintenance effort.

Pascal Analyzer138

Copyright © 2001-2025 Peganza

Results are also calculated for code from different source folders. Each folder generates
one set of data. In this way, you can compare for instance code from different third-party
toolkits that are located in different folders.

For these metrics, only source code files are counted, so for instance DFM files are not
included.

Total Lines are all lines, including blank lines and comment lines.

Lines of Code are lines, excluding blank lines and full comment lines that contain actual
code. For a subprogram (procedure/function) this is the code part including lines with
begin/end.

Comment Lines are comment lines or lines that are partly commented.

Decision points is equivalent to McCabe’s metric, or cyclometric complexity. These are all
well-known metrics in the software industry that are used to estimate code complexity.
Decision points are positive integers where increasing values mean a higher degree of
complexity. It is calculated by PAL in this way:

1. Start with a value of 1 for the normal flow through a subprogram.
2. Add 1 for each of these keywords: IF, WHILE, REPEAT, FOR, AND, OR, XOR, GOTO.
Note that PAL always counts AND, OR, XOR, even if they are used as arithmetic operators
in the actual code.
3. Add 1 for each case label in a CASE statement. When the CASE does not have an
ELSE, add 1 more.

A normal interpretation of decision points is that you should try to break routines with a
value of 10 or more into smaller pieces.

Decision Points/Lines of Code is just an average of the DP over the lines of code.

Characters/Lines of Code is an average of characters over lines of code.

Comment Characters/Characters is an average of comment characters over total
characters. All comment characters including leading and trailing white space (beginning
and end lines) are accounted for, plus the comment tokens themselves.

Example:

{ this is a comment }

This comment has 21 characters

// another one

This comment has 14 characters

{this
 comment is on
 multiple
 lines}

This comment has a total of 32 characters

Reports 139

Copyright © 2001-2025 Peganza

This is an excerpt from a complexity report:

**
* Complexity Report for *
* C:\PROJEKT\PSEARCH\PSEARCH.DPR *
**

Abbreviations: C=Constructor D=Destructor F=Function
 FM=Function (method) MB=Program main block
 P=Procedure PM=Procedure (method)
 UF=Unit finalization UI=Unit initialization

Module/Subprogram Total LOC Cmt Cmts/ DP DP/ Chrs/
 Lines Lines Total LOC LOC
 Lines

Overall 715 436 132 0,18 46 0,11 1

psearch 14 10 1 0,07 1 0,10 20
 psearch (MB) 5 5 0 0,00 1 0,20 19

psform 701 426 131 0,19 45 0,11 26
 TPSMainForm.chkAllFilesClick (PM) 5 4 0 0,00 2 0,50 12
 TPSMainForm.CmdQuitClick (PM) 4 3 0 0,00 1 0,33 5
 TPSMainForm.CmdSaveClick (PM) 13 11 0 0,00 2 0,18 14
 TPSMainForm.CmdSearchClick (PM) 55 42 0 0,00 9 0,21 19
 TPSMainForm.CmdSelStartDirClick (PM) 8 6 0 0,00 2 0,33 28
 TPSMainForm.CmdSpecial1Click (PM) 104 53 29 0,28 3 0,06 30
 TPSMainForm.CmdSpecial2Click (PM) 130 96 2 0,02 13 0,14 21

Even if it may seem simple, lines of code is quite a good measure of how complex a
program is. Decision points (DP) also provide a good indication.

Be forewarned that the Complexity Report may take relatively long time to generate,
compared with the other reports.

It is possible to sort this section according to any of the keys, like Total Lines, LOC, DP
etc.

Long identifier names

PAL also creates a list of all identifiers with names that are longer or equal to 15 (default)
characters in length. You can select the identifier length, for which PAL will start
reporting. E.g. if you select 20, PAL will report all identifiers having 20 or more
identifiers.

The remaining sections in the Complexity Report show different lists. These list rate
modules, subprograms and classes by varying criteria, like most lines of code (LOC).
Optionally, if HTML reports are created, a chart can be generated for each section. The
charts are saved as image files (JPG) in the report folder.

This is a sample of a chart illustrating Largest Modules by Total Lines:

Pascal Analyzer140

Copyright © 2001-2025 Peganza

These sections show statistics:

Largest Modules by Total Lines
Largest Modules by LOC
Most Complex Modules by DP
Most Complex Modules by DP/LOC
Most Complex Modules by Characters per LOC
Most Commented Modules by Comment Lines
Most Commented Modules by Comment Lines per Total Lines
Most Commented Modules by Comment Lines per LOC
Most Commented Modules by Comment Characters per Total Characters

Largest Subprograms by Total Lines
Largest Subprograms by LOC
Most Complex Subprograms by DP
Most Complex Subprograms by DP/LOC
Most Complex Subprograms by Characters per LOC
Most Commented Subprograms by Comment Lines
Most Commented Subprograms by Comment Lines per Total Lines
Most Commented Subprograms by Comment Lines per LOC
Most Commented Subprograms by Comment Characters per Total Characters

Most Methods per Class
Most Fields per Class
Most Properties per Class
Most Parameters per Subprogram

Reports 141

Copyright © 2001-2025 Peganza

See also:

 Metrics Reports

14.3.4 Object-oriented Metrics Report

Targets: All

Sections:

OOME1-Weighted methods per class (WMC)
OOME2-Depth of inheritance tree (DIT)
OOME3-Number of children (NOC)
OOME4-Coupling between object classes (CBO)
OOME5-Response for a class (RFC)
OOME6-Lack of cohesion of methods (LCOM)

OOME1-Weighted methods per class (WMC)

The number of methods in a class predicts the time and effort needed to develop and
maintain the class. In the PAL implementation, the mean decision-point (DP) is
calculated for the class. This is presented together with the DP for each method in the
class.

Weighted Methods per Class (WMC):
--

BAbout.TAboutBox (WMC=2,0)............................. BAbout (14)
CmdLicenseClick (PM) (DP=1).......................... BAbout\TAboutBox (34)
Create (C) (DP=1).................................... BAbout\TAboutBox (48)
FillControls (PM) (DP=4)............................. BAbout\TAboutBox (45)

BCat.TPegCategory (WMC=0,7)............................ BCat (23)
Create (C) (DP=0).................................... BCat\TPegCategory (80)
ReadStream (PM) (DP=1)............................... BCat\TPegCategory (82)
WriteStream (PM) (DP=1).............................. BCat\TPegCategory (83)

OOME2-Depth of inheritance tree (DIT)

The deeper a class hierarchy is, the more complex it becomes. Deep trees indicate
greater complexity, but also promote code reuse because of inheritance.

DIT is calculated as the number of classes traversed from the actual class to the root
class. Because every class inherits from TObject, this number is at least 1. A class that
inherits from an unknown class (a class for which code has not been found), has a
number of 2. This is because the unknown class has at least DIT=1.

Depth of Inheritance Tree (DIT):
--

BAbout.TAboutBox (DIT=2)............................... BAbout (14)
BCat.TPegCategory (DIT=1).............................. BCat (23)
BCat.TPegCategoryHandler (DIT=1)....................... BCat (25)
BCat.TPegCategoryList (DIT=1).......................... BCat (22)
BFile.EIncludeBroken (DIT=2)........................... BFile (12)

Pascal Analyzer142

Copyright © 2001-2025 Peganza

BLicFrm.TSettingsDialog (DIT=2)........................ BLicFrm (14)
BRes.TPegResource (DIT=1).............................. BRes (23)
BRes.TPegResourceHandler (DIT=1)....................... BRes (25)
BRes.TPegResourceList (DIT=1).......................... BRes (22)

OOME3-Number of children (NOC)

This number is calculated as the immediate number of children for a given class.
A high number indicates high code reuse. A large number of children could also mean a
bad abstraction of the parent class.

Number of Children (NOC):
--

BAbout.TAboutBox (NOC=0)............................... BAbout (14)
BCat.TPegCategory (NOC=0).............................. BCat (23)
BCat.TPegCategoryHandler (NOC=0)....................... BCat (25)
GFiles.TAbstractFile (NOC=2)........................... GFiles (43)

OOME4-Coupling between object classes (CBO)

Two classes are coupled when methods in one class use methods, properties or fields in
another class. This is counted both ways, it does not matter which class that calls the
other.

A high number for CBO is not desirable. It means that the class is less independent or
less loosely coupled. A low number for CBO on the other hand, the easier it is to reuse it
in another project.

Coupling between Object Classes (CBO):
--

BAbout.TAboutBox (CBO=2)............................... BAbout (14)
OvcRLbl.TOvcRotatedLabel............................. OvcRLbl (126)
OvcURL.TOvcURL....................................... OvcURL (54)

BCat.TPegCategory (CBO=5).............................. BCat (23)
TdPrnWiz.TPrintWizardDialog.......................... TdPrnWiz (19)
TdMain.TTodoMainForm................................. TdMain (19)
TdEdCat.TTdEditCategoryDialog........................ TdEdCat (14)
BCat.TPegCategoryHandler............................. BCat (25)
BCat.TPegCategoryList................................ BCat (22)

OOME5-Response for a class (RFC)

The response number for a class is the number of methods or procedures that can be
potentially executed if a message (for example a function call) is received by the class.

It is defined as

RFC = M + R

where

M = number of methods in the class
R = number of remote methods directly called by methods of the class

Reports 143

Copyright © 2001-2025 Peganza

RFC counts only the first level of calls outside the class. It is calculated by following all
calls from methods in the class, if these calls lead to methods in other classes or to
procedures or functions. Every given method/subprogram is only counted once.

A large number for RFC indicates that the class is complex and hard to understand. It
means that more time must be given for testing and debugging.

Response for a Class (RFC):
--

BAbout.TAboutBox (RFC=3)............................... BAbout (14)
BCat.TPegCategory (RFC=3).............................. BCat (23)
BCat.TPegCategoryHandler (RFC=14)...................... BCat (25)
BCat.TPegCategoryList (RFC=6).......................... BCat (22)
BFile.EIncludeBroken (RFC=0)........................... BFile (12)
BLicFrm.TSettingsDialog (RFC=4)........................ BLicFrm (14)
BRes.TPegResource (RFC=2).............................. BRes (23)
BRes.TPegResourceHandler (RFC=13)...................... BRes (25)
BRes.TPegResourceList (RFC=6).......................... BRes (22)

OOME6-Lack of cohesion of methods (LCOM)

A class that is cohesive performs one and only one function. Lack of cohesion means the
class performs more than one function.

LCOM = P – Q, if P > Q

else

LCOM = 0

The number is calculated by taking each possible pair of methods in the class. If they
access the same field, increase Q by one. If they don’t, increase P by one.

LCOM = 0 means a cohesive class.

If LCOM > 0, the class could be split into two or more classes. A high LCOM indicates that
the class is error-prone.

Lack of Cohesion in Methods (LCOM):
--

BAbout.TAboutBox (LCOM=0).............................. BAbout (14)
BCat.TPegCategory (LCOM=0)............................. BCat (23)
GEnhLb.TEnhancedListBox (LCOM=13)...................... GEnhLb (16)
GFiles.TBinaryFile (LCOM=26)........................... GFiles (51)
GFiles.TTextFile (LCOM=0).............................. GFiles (118)
GFrView.TFrPreviewDialog (LCOM=0)...................... GFrView (16)
GGlyphLb.TGlyphListBox (LCOM=0)........................ GGlyphLb (14)
GNag.TNagDialog (LCOM=0)............................... GNag (15)
GSapi.TSapiVoice (LCOM=0).............................. GSapi (13)
TdApp.TTodoAppHandler (LCOM=0)......................... TdApp (16)
TdArch.TTdViewArchiveDialog (LCOM=1)................... TdArch (14)
TdCommon.TCommonModule (LCOM=0)........................ TdCommon (16)
TdEdCat.TTdEditCategoryDialog (LCOM=4)................. TdEdCat (14)

See also:

Pascal Analyzer144

Copyright © 2001-2025 Peganza

 Metrics Reports

14.4 Reference Reports

The reference reports are:

 Modules Report

 Identifiers Report

 Duplicate Identifiers Report

 Similarity Report

 Literal Strings Report

 Subprogram Index Report

 Bindings Report

 Third-party dependencies Report

 Most Called Report

 Call Tree Report

 Reverse Call Tree Report

 Call Index Report

 Exception Report

 Brief Cross-reference Report

 Cross-reference Report

 Used Outside Report

 Subprogram Parameters Report

 Uses Report

 Conditional Symbols Report

 Directives Report

 To-Do Report

 Module Call Tree Report

 Help Report

 Searched Strings Report

 Map File Report

 Clone Report

See also:

Reports
All Reports

14.4.1 Modules Report

Targets: All

Sections:

Reports 145

Copyright © 2001-2025 Peganza

MODU1-Module information
MODU2-Last modified file
MODU3-Unique files
MODU4-Missing files
MODU5-Binary DFM/XFM files

MODU1-Module information

This section lists all modules that were found by PAL, reporting the following data:

- Lines
- Size (bytes)
- Date
- Time
- Path
- Encoding
- Initialization (if the module has an initialization section)
- Finalization (if the module has a finalization section)

MODU2-Last modified file

This tells which source file that was last modified. If there are more than one file that
share the same modification time, PAL will just report the first one it encounters.

MODU3-Unique files

This is a list of all unique files referenced. You may use this information to create a batch
backup utility.

MODU4-Missing files

This is a list of all missing files. Those are files that are referenced, but that PAL was
unable to find.

Even files that are not affected in the current analysis will be reported. Consider this
code:

(*$IFDEF WIN32*)
 (*$I Utils32.inc*)
(*$ELSE*)
 (*$I Utils64.inc*)
(*$ENDIF*)

Here, if you analyse with a 32-bits target, the file Utils32.inc is reported if it does not
exist.
But the same applies to the file Utils64.inc, if it does not exist, even though it is not
actually affected by the current analysis.

Pascal Analyzer146

Copyright © 2001-2025 Peganza

It should be a problem if you try to compile the code with a 64-bits target.

MODU5-Binary DFM/XFM files

This is a list of all DFM/XFM files that are saved in binary format. It is advisable to choose
text format instead.

See also:

 Reference Reports

14.4.2 Identifiers Report

Targets: All

Sections:

IDEN1-Identifiers
IDEN2-Global Variables
IDEN3-Module Global variables
IDEN4-Inlined variables and constants

IDEN1-Identifiers

This section writes a table listing all the identifiers in the program indicating their type
and location. Use this as an index for your source code, and to locate a specific
identifier.

IDEN2-Global Variables

This section lists variables that are globally declared in unit interface parts.

IDEN3-Module Global variables

This section lists variables that are globally declared in the unit implementation parts.

IDEN4-Inlined variables and constants

This section lists variables and constants that are declared inline.

**
* Identifiers Report for *
* C:\PROJEKT\PSEARCH\PSEARCH.DPR *
**

Reports 147

Copyright © 2001-2025 Peganza

AllowClickEvents : Boolean ClassField psform\TPSMainForm (61)
Analyzing : Boolean ClassField psform\TPSMainForm (62)
Attrs : integer Var, Local psform\TPSMainForm\CmdSpecial2Click
(422)

Base : TStringList Var, Local psform\TPSMainForm\CmdSpecial1Click
(315)
Bevel1 : TBevel ClassField psform\TPSMainForm (35)

CanClose : Boolean VarParam psform\TPSMainForm\FormCloseQuery
(56)
chkAllFiles : TCheckBox ClassField psform\TPSMainForm (28)
chkAllFilesClick Proc, Method psform\TPSMainForm (53)
chkCaseSensitive : TCheckBox ClassField psform\TPSMainForm (43)
chkIncludeSubFolders : TCheckBox ClassField psform\TPSMainForm (25)
chkListAllSearched : TCheckBox ClassField psform\TPSMainForm (37)
chkOnlyDelphi : TCheckBox ClassField psform\TPSMainForm (33)
chkOnlyInc : TCheckBox ClassField psform\TPSMainForm (30)
chkOnlySql : TCheckBox ClassField psform\TPSMainForm (31)
chkOnlyTxt : TCheckBox ClassField psform\TPSMainForm (34)
chkOnlyVB : TCheckBox ClassField psform\TPSMainForm (32)
chkOnlyWeb : TCheckBox ClassField psform\TPSMainForm (29)
chkReadOnly : TCheckBox ClassField psform\TPSMainForm (45)

See also:

 Reference Reports

14.4.3 Duplicate Identifiers Report

Targets: All

Sections:

DUP1-Duplicate Identifiers
DUP2-Duplicate Identifiers in overlapping scope

DUP1-Duplicate Identifiers

This section produces a list of all identifiers that share the same name. Even if it is legal
to duplicate identifier names, it may sometimes be confusing, and lead to bugs that are
hard to find.

**
* Duplicate Identifiers Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *
**

Duplicate Identifiers (572):
--

AFreeOnDelete : Boolean ValParam GCACHE\TPointerCache\Create (81)
AFreeOnDelete : Boolean ValParam GCACHE\TObjectCache\Create (65)

AMaxEntries : Integer ValParam GCACHE\TPointerCache\Create (80)
AMaxEntries : Integer ValParam GCACHE\TObjectCache\Create (64)
AMaxEntries : Integer ValParam GCACHE\TStringCache\Create (50)
AMaxEntries : Integer ValParam GCACHE\TAbstractCache\Create (26)

AParam : Long String ConstParam GCACHE\TStringCache\AddString (53)
AParam : Long String ConstParam GCACHE\TAbstractCache\AddToCache (29)

Pascal Analyzer148

Copyright © 2001-2025 Peganza

DUP2-Duplicate Identifiers in overlapping scope

This section produces a list of all identifiers that share the same name. But it only lists
those that are in overlapping scope.Those duplicate identifiers are most likely to lead to
confusion.

See also:

 Reference Reports

14.4.4 Similarity Report

Targets: All

The Similarity Report has currently just one section:

Similarity by Soundex

This section produces a list of all identifiers that have the same Soundex value, and that
are in the same unit (prior to version 8.1.5, identifiers that were in overlapping scope
were included). Soundex is a phonetic algorithm for indexing names by sound, as
pronounced in English.

See also:

 Reference Reports

14.4.5 Literal Strings/Numbers Report

Targets: All

This report creates a list of all literal strings/numbers, both those declared as constants
and those immersed in the code. Consider using a constant or a resourcestring instead of
a hard-coded literal string. Using literal strings often makes your code harder to read and
maintain.You may use this report to locate and document all strings, for instance when
translating your program to another language. This report consists of five sections:

Resourcestrings (from Delphi 3) (LSTR1)
Literal strings declared as constants, more than one character (LSTR2)
Literal strings in code, more than one character (LSTR3)
Literal strings that could be replaced with constants/resourcestrings, more than
one character (LSTR4)
Literal numbers in code (LSTR5)

The last section only reports numbers that are <> 0.

The sorting done depends on the sort mode setting in Options|Properties - General, so
either the sorting will be according to module or according to the string itself.

Reports 149

Copyright © 2001-2025 Peganza

**
* Literal Strings Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *
**

Literal strings declared as constants, more than one character (136):
--

'--' GPeriod (25)
'- not used -' GCommon (229)
'- not selected -' GCommon (228)
'.avi' GCommon (174)
'.bin' GCommon (121)
'.bmp' GCommon (142)
'.db' GCommon (139)
'.dbf' GCommon (127)

See also:

 Reference Reports

14.4.6 Subprogram Index Report

Targets: All

This report produces an index of all subprograms. Procedures, functions, constructors,
destructors, and methods are reported. The indentation at the beginning of each line
indicates which routines are nested within one another. This report helps you quickly
locate any subprogram in your source code. Here is an example:

**
* Subprogram Index Report for *
* C:\PROJEKT\PSEARCH\PSEARCH.DPR *
**

Abbreviations: C=Constructor D=Destructor F=Function
 FM=Function (method) MB=Program main block
 P=Procedure PM=Procedure (method)
 UF=Unit finalization UI=Unit initialization

psearch (MB)..psearch (10)
TPSMainForm.chkAllFilesClick (PM).......................psform\TPSMainForm (53)
TPSMainForm.CmdQuitClick (PM)...........................psform\TPSMainForm (57)
TPSMainForm.CmdSaveClick (PM)...........................psform\TPSMainForm (47)
TPSMainForm.CmdSearchClick (PM).........................psform\TPSMainForm (46)
TPSMainForm.CmdSelStartDirClick (PM)....................psform\TPSMainForm (48)
TPSMainForm.CmdSpecial1Click (PM).......................psform\TPSMainForm (58)
TPSMainForm.CmdSpecial2Click (PM).......................psform\TPSMainForm (59)
TPSMainForm.CmdStopClick (PM)...........................psform\TPSMainForm (55)
TPSMainForm.FormCloseQuery (PM).........................psform\TPSMainForm (56)
TPSMainForm.FormCreate (PM).............................psform\TPSMainForm (49)
TPSMainForm.FormDestroy (PM)............................psform\TPSMainForm (50)
TPSMainForm.FormShow (PM)...............................psform\TPSMainForm (54)
TPSMainForm.GeneralSearch (PM)..........................psform\TPSMainForm (67)
TPSMainForm.SpecialSearch (PM)..........................psform\TPSMainForm (68)
TPSMainForm.txtPatternChange (PM).......................psform\TPSMainForm (52)
TPSMainForm.txtRootDirChange (PM).......................psform\TPSMainForm (51)
TPSMainForm.UpdateStatus (PM)...........................psform\TPSMainForm (69)

The Subprogram Parameters Report is similar. It also lists the parameters for each
subprogram.

See also:

Pascal Analyzer150

Copyright © 2001-2025 Peganza

 Reference Reports

14.4.7 Bindings Report

Targets: All

This report produces a list of all subprograms (functions/procedures) in your source code.
For each subprogram, all outside subprograms, variables etc that are referenced (used)
by the subprogram are listed. This information measures how dependent a subprogram is
of other code.

Subprograms with few bindings are more generic and standalone. For instance, use this
report when you change a subprogram, to locate which other parts of the code that you
need to test.

**
* Bindings Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *
**

Bindings:
--

Abbreviations: C=Constructor D=Destructor F=Function
 FM=Function (method) MB=Program main block
 P=Procedure PM=Procedure (method)
 UF=Unit finalization UI=Unit initialization

GDebug (UF).. GDebug (425)
ref AllocList : TList Var, Global GDebug (68)

GDebug (UI).. GDebug (413)
ref AllocList : TList Var, Global GDebug (68)
set AllocList : TList Var, Global GDebug (68)
set gDebugLevel : Integer Var, Interfaced GDebug (17)
set MarkMemCount : Integer Var, Global GDebug (72)
set MarkMemSize : Integer Var, Global GDebug (71)

AssignPeriodFormats (P)................................ GPeriod (38)
unk fpFormats : Array (static) Typed const, Interfaced GPeriod (102)

See also:

 Reference Reports

14.4.8 Third-party Dependencies Report

Targets: All

This report has five sections:

Third-party folders directly referenced (THPA1)
Third-party units directly referenced (THPA2)
Third-party identifiers directly referenced (THPA3)
Third-party identifiers directly referenced, with locations (THPA4)
Third-party class and interface types directly referenced (THPA5)

All code is considered to be third-party (external), if it is located in a folder that is

Reports 151

Copyright © 2001-2025 Peganza

different than the folder for the project main file. Possibly this will also include code that
is not really third-party (external), but your own.

But there is also a possibility to mark additional folders as "own" (optionally also
subfolders). There is a button on the Reports tab page.

The report will give you an overview of how your code depends on third-party code. You
may for example discover that a particular set of third-party code is only used briefly. In
that case you may decide to replace it to get rid of the dependency.

The report sections showing identifiers include ALL found identifiers, even those that are
located in folders that are excluded for reporting. The reason for this is that you
otherwise would have to include these folders to get this information, leading to much
bigger lists for other reports.

Also note, that this report gives the best results if you select to parse all code (option "All
files" in project options, General tab page).
As explained above, you can use the option "Exclude identifiers from other folders in
reports.." to avoid big lists in other reports.

There is an option "Also subfolders". If this option is checked, code that is located in
subfolders below the main folder, is NOT considered to be third-party code.

**
* Third-party dependencies Report for *
* C:\PROJEKT\PIM\EPA.DPR *
**

(9) Third-party folders directly referenced:
--

C:\Program Files\FastReports\FastReport\Source
D:\3rdParty\TurboPower\Orpheus\source
D:\3rdParty\TurboPower\ShellShock\source
D:\3rdParty\TurboPower\SysTools\source
D:\3rdParty\VirtualTreeview

(36) Third-party modules directly referenced:
--

BAbout
BCat
BFile
BGlobals
BGuard
BIcon
BRes
BTodo
BUtils

See also:

 Reference Reports

14.4.9 Most Called Report

Targets: All

Pascal Analyzer152

Copyright © 2001-2025 Peganza

This report lists, in descending order, the subprograms that are most often called. Please
note that this number just reflects the number of locations in the code where the
particular subprogram is called. It cannot predict how many times a subprogram is called
when the program is run. Instead use a profiler tool to obtain this information.

**
* Most Called Report for *
* C:\PROJEKT\PSEARCH\PSEARCH.DPR *
**

These subprograms are called from two or more locations (4):

5 UpdateStatus Proc, Method psform\TPSMainForm (69)
3 GetElapsedTimeString Func, Method GTimer\TTimeMeasurer (21)
2 Create Constructor PSEngine\TPatternSearcher (62)
2 Search Proc, Method PSEngine\TPatternSearcher (68)

See also:

 Reference Reports

14.4.10 Call Tree Report

Targets: All

Source code consists of calls from subprograms to other subprograms. These
subprograms in turn call other subprograms. All these calls form hierarchical call trees.
Note that PAL often will create several separate trees that form the hierarchy. Use this
tree to get an understanding of the calls between subprograms in your source code.

Subprograms from units in excluded folders are not reported.

Each branch in the call tree is assigned a number. The string “..” followed by a branch
number indicates that the particular section has already been drawn in the hierarchy. For
HTML reports, a link is created, allowing you to easily find the section.

There is an option “All”. If you select this option, PAL also reports branches that have
already been drawn. This can result in a very long call listing. The default value is False.

The option "Extend" if selected, will create roots for all subprograms, not only those that
call others but are not called themselves. Default is False.

Recursive calls are marked with “(rec)”. Here is an example of a Call Tree Report:

psform.TPSMainForm.chkAllFilesClick
psform.TPSMainForm.UpdateStatus

psform.TPSMainForm.CmdSearchClick
psform.TPSMainForm.GeneralSearch
psform.TPSMainForm.SpecialSearch
psform.TPSMainForm.UpdateStatus

psform.TPSMainForm.FormShow
psform.TPSMainForm.UpdateStatus

Reports 153

Copyright © 2001-2025 Peganza

psform.TPSMainForm.txtPatternChange
psform.TPSMainForm.UpdateStatus

See also:

 Reference Reports

14.4.11 Reverse Call Tree Report

Targets: All

This report is like the Call Tree Report, but reverse. It produces an outline of the call
structure of your program, like the Call Tree Report. But it does so in reverse order. This
means it starts with the subprograms that are only called, and that not call any other
subprograms. This report can help you get a better understanding of how your low-level
routines are used.

There is an option “All”. If you select this option, PAL also reports branches that have
already been drawn. This can result in a very long call listing. The default value is False.

The option "Extend" if selected, will create roots for all subprograms, not only those that
are called but not call others. Default is False.

Recursive calls are marked with “(rec)”.

See also:

 Reference Reports

14.4.12 Call Index Report

Targets: All

This report is similar to the Call Tree Report. For every subprogram, it lists which other
subprograms that are called. In addition, it lists all calls from other subprograms to the
particular subprogram.

Subprograms from units in excluded folders are not reported.

**
* Call Index Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *
**

Call Index:
--

GAsmCode._FastSameText, GAsmCode (10) called by (5):

GTools.CheckStringIsValid GTools (221)
GTools.IsFullPathToDir GTools (75)
GTools.IsPartStr GTools (74)
GTools.SameDirectory GTools (224)
GTools.SameExtension GTools (225)

Pascal Analyzer154

Copyright © 2001-2025 Peganza

GCACHE.TAbstractCache.AddToCache, GCACHE\TAbstractCache (29) calls (1):

GIntList.TIntList.AddInteger GIntList\TIntList (18)

See also:

 Reference Reports

14.4.13 Exception Report

Targets: All except BP7

Sections:

EXCP1-Exception Call Tree
EXCP2-Raised exceptions

EXCP1-Exception Call Tree
This section is like the Reverse Call Tree Report, but it also describes how exceptions are
handled.
Use this section to identify parts of your code that are not protected, and that will allow
exceptions to bubble up to the highest level.

EXCP2-Raised exceptions
This section contains a list of all raised exception types.

See also:

 Reference Reports

14.4.14 Brief Cross-reference Report

Targets: All

This report lists for every identifier, all locations where it is referenced and set (but only
locations in modules that are not excluded for reporting). The same results are produced
as in the Cross-reference Report, but with another formatting.For objects it also reports
locations where the object is created and freed. Identifiers that are only declared, but
never used, are not included. Here is an excerpt from such a table:

**
* Brief Cross-reference Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *
**

Abbreviations: c=Created f=Freed i=Implemented r=Referenced s=Set u=Unknown v=Varparam

Brief crossreference:
--

_FastSameText Func, Interfaced GAsmCode (10)
GAsmCode 90i

Reports 155

Copyright © 2001-2025 Peganza

GTools 782r 805r 2070r 2084r 2092r

AChar : Char ValParam GTools\CharExistsPas (239)
GTools 2160s

AddInteger Func, Method GIntList\TIntList (18)
GCACHE 125r 126r 127r 375r
GIntList 46i 57r

See also:

 Reference Reports

14.4.15 Cross-reference Report

Targets: All

This report lists for every identifier, all locations where it is referenced and set (but only
locations in modules that are not excluded for reporting). For objects it also reports
locations where the object is created and freed. Identifiers that are only declared, but
never used, are not included. The layout is more spacious than in the Brief
Cross-reference Report, but the content is equivalent. Here is an excerpt from such a
table:

**
* Cross-reference Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *
**

Abbreviations: cre=Created fre=Freed imp=Implemented ref=Referenced
 set=Set unk=Unknown var=Varparam

Cross-reference:
--

_FastSameText Func, Interfaced
dec GAsmCode (10)
imp GAsmCode (90)
ref GTools\CheckStringIsValid (2070)
ref GTools\IsFullPathToDir (805)
ref GTools\IsPartStr (782)
ref GTools\SameDirectory (2084)
ref GTools\SameExtension (2092)

AChar : Char ValParam
dec GTools\CharExistsPas (239)
unk GTools\CharExistsPas (2160)

Please note a special case. Consider this rather meaningless code:

Pascal Analyzer156

Copyright © 2001-2025 Peganza

It will produce this report:

Cross-reference:
--

FMyField : Integer ClassField
 dec Prop\TMyClass (5)
 ref Prop (7)
 ref Prop\ (16)
 set Prop\ (17)

MyField : Integer Property
 dec Prop\TMyClass (7)
 ref Prop\ (16)
 set Prop\ (17)

Obj : TMyClass Var, Global
 cre Prop\ (14)
 dec Prop (12)
 fre Prop\ (19)
 ref Prop\ (16)
 ref Prop\ (17)

TMyClass = Class Type, Global
 dec Prop (3)
 ref Prop (12)
 ref Prop\ (14)

Note that the property declaration on line 8 just renders a "ref" for FMyField.
This is because FMyField is really just formally referenced (in read/write declarations) on
this line. However, on line 17-18 the property MyField is referenced and set, so this also
gives an implicit "ref" and "set" for FMyField,

See also:

Reports 157

Copyright © 2001-2025 Peganza

 Reference Reports

14.4.16 Used Outside Report

Targets: All

For each unit, every identifier is listed that is referenced from other units. This gives a
measurement of how general the unit is. This information gives an idea of how general
and standalone a specific unit is. Here is an example of such a report:

**
* Used Outside Unit Report for *
* C:\PROJEKT\PSEARCH\PSEARCH.DPR *
**

These interfaced identifiers are used outside their units

PsForm:

PSMainForm : TPSMainForm Var, Interfaced psform (74)
TPSMainForm = Class Type, Interfaced psform (13)

See also:

 Reference Reports

14.4.17 Subprogram Parameters Report

Targets: All

This report is similar to the Subprogram Index Report, but more complete. It also lists all
parameters for each subprogram.

See also:

 Reference Reports

14.4.18 Uses Report

Targets: All

Sections:

USES1-Unit usage
USES2-Modules that are referenced in the Delphi project file, but not used
USES3-Modules that are used but not added to the Delphi project file
USES4-References
USES5-Optimal uses list

USES6-Runtime initialization order
USES7-Mutual unit references
USES8-All modules
USES9-Optimal uses list per module

Please note that the Uses Report reports units from all folders, even from those that are

Pascal Analyzer158

Copyright © 2001-2025 Peganza

set as excluded in the project options.

An additional file Lattix.xml is always created in the report directory. It is a file that you
can use to integrate with Lattix products, if you use them.

USES1-Unit usage

This report section lists all units that PAL is able to find. For each unit, the uses
statements are analyzed. The units specified in these clauses are listed, indicating if they
are actually used. Units that have initialization sections are specially marked. It is often
desirable to keep those units in the uses lists, even if they are not formally needed, in
order to execute the initialization code.

Removing unused uses references has multiple benefits:

- cleaner code to maintain, no need to bother about code that is not used
- code from initialization and finalization sections in unused units is not linked in and run,
reducing the size of the EXE
- resources (icons, bitmaps etc) used by referenced units are not linked in
- compilation runs smoother and quicker

Units specified in the interface uses list are categorized as:

Unnecessary
Used in unknown way
Used in interface
Used in implementation
Used by inherited form

You can probably remove units categorized as “unnecessary” from the uses list. If they
are categorized as “used in implementation”, move them to the uses list in the
implementation section.

Units used by base forms (in form inheritance), are also listed by the Delphi IDE for child
forms even if they are not needed for the compilation. Trying to remove such a reference
will only result in the IDE reinserting the declaration when the unit is saved. These
situations are detected and the unit is listed as "used by inherited form" instead of
"unnecessary".

Units specified in the implementation uses list are categorized as:

Unnecessary
Used in unknown way
Used in implementation

You can probably remove units categorized as “unnecessary” from the uses list.

A special case is Delphi project files (DPR-files). The units listed in the uses list in the
DPR-file are often not referenced in that file, and PAL consequently categorizes them as
unnecessary. Nevertheless, you probably want to keep them in that uses list, so they are
available to Delphi’s Project Manager.

Reports 159

Copyright © 2001-2025 Peganza

When you drop a VCL component on a Delphi form the Delphi IDE automatically adds the
unit or units required by the component to the interface section uses statement. This is
done to ensure that the form file (DFM/XFM) can locate the code needed to stream the
form and components. Even if you later remove the component, the units are not deleted
from the uses statement. This causes the need to sometimes clean the uses statement of
unused units. In addition, units that you add manually may be left behind in the uses
statements if you later delete the code sections that need these units.

Even if the compiler does not include code from units that are never used, the
initialization section (or finalization section) is included in the EXE file regardless of
whether any methods from the unit are used or not. Also resources may be linked into
the final EXE. One tip here is to generate and examine the MAP-file. The initialization
section is also always executed when the application starts. This is a good reason why
you should remove superfluous units from the uses lists. It will also make compilations
more efficient. The fewer units in the uses clause, the quicker the compiler can do its job.

Sometimes, PAL determines that a unit is not needed, but Delphi reinserts it anyway into
the uses-list when the unit is saved. This happens when working in the Delphi IDE.

If a project uses conditional compilation, maybe a unit is sometimes needed and
sometimes not; such a unit must remain within a project. You could wrap conditional
defines around such a unit declaration in the uses clause, like:

There is an option “Only warnings” for the Uses Report in the Properties dialog. Select
this checkbox to only report those units that can be removed from the uses list or moved
from the interface to implementation uses list. The default value is FALSE.

USES2-Modules that are referenced in the Delphi project file, but not used

This section lists all units that are included in the Delphi project file, but are not used.
These references can probably be removed from the project file. One reason to include
them in the project is to make them accessible from the Project Manager in the Delphi
IDE.

USES3-Modules that are used but not added to the Delphi project file

This is a list of units that are used, but not added to the Delphi project file. One reason to
include them in the project is to make them accessible from the Project Manager in the
Delphi IDE.

USES4-References

This section lists for every unit, which other units that are referenced. It also lists all
units that reference this unit.

Pascal Analyzer160

Copyright © 2001-2025 Peganza

USES5-Optimal uses list

This is a list of the units, in the order that they are parsed by PAL.

It is a good idea to keep general units placed before less general units in the uses lists,
for the compiler to run as smoothly and quickly as possible. You can use the Optimal
Uses list to achieve this aim.

USES6-Runtime initialization order

This section lists the order in which the initialization sections are executed at runtime.

USES7-Mutual unit references

This section lists units that reference each other. This leads to a strong coupling between
the units, which is usually to be avoided.

USES8-All modules

This section lists all referenced units in the project, regardless if the source is found or
not. Use the section to get an overview of the used units.

USES9-Optimal uses list per module

The section is similar to USES5-"Optimal uses list" but presents uses lists per module.
This makes it easy to copy-and-paste from the report to code.

MUSE1-Units used by the projects

This section, which is available only for multi-projects, lists all units used by the
projects.

MUSE2-Units used by all projects

This section, which is available only for multi-projects, lists all common units used by all
analyzed projects.

See also:

 Reference Reports

Reports 161

Copyright © 2001-2025 Peganza

14.4.19 Conditional Symbols Report

Targets: All

This report has different sections presenting information about conditional symbols.

Sections:

COND1-Conditional symbols that were defined ($DEFINE) in code
COND2-Conditional symbols that were undefined ($UNDEF) in code
COND3-Conditional symbols/expressions that were evaluated as true
($IF/$IFDEF/$ELSEIF)
COND4-Conditional symbols/expressions that were evaluated as false
($IF/$IFDEF/$ELSEIF)
COND5-Unnecessary $DEFINE/$UNDEF

COND6-Unnecessary $IFDEF/$IFNDEF
COND7-$DEFINE/IFDEF used but no matching $IFDEF/$IFNDEF in code

COND1-Conditional symbols that were defined ($DEFINE) in code
This is a list of all conditional symbols that were defined in the parsed code. Use this list
for a sanity-check that your code defines the correct symbols. This section also reports
symbols that are defined in code that is excluded for reporting.

COND2-Conditional symbols that were undefined ($UNDEF) in code
This is a list of all conditional symbols that were undefined in the parsed code. Use this
list for a sanity-check that your code defines the correct symbols. This section also
reports symbols that are defined in code that is excluded for reporting.

COND3-Conditional symbols/expressions that were evaluated as true ($IF/$IFDEF/$ELSEIF)
This is a list of all conditional symbols or expressions that at some point in the code were
evaluated as true.

COND4-Conditional symbols/expressions that were evaluated as false ($IF/$IFDEF/$ELSEIF)
This is a list of all conditional symbols or expressions that at some point in the code were
evaluated as false.

COND5-Unnecessary $DEFINE/$UNDEF
This section lists locations in the source code where a $DEFINE or $UNDEF directive is
repeated unnecessarily. The directive can normally be removed from the location where
it is repeated, giving code that is easier to comprehend and maintain.

Example

Pascal Analyzer162

Copyright © 2001-2025 Peganza

COND6-Unnecessary $IFDEF/$IFNDEF
This section lists locations in the source code where a $IFDEF or $IFNDEF directive is
repeated unnecessarily. The directive can normally be removed from the location where
it is repeated, giving code that is easier to comprehend and maintain.

Example

COND7-$DEFINE/IFDEF used but no matching $IFDEF/$IFNDEF in code
This section lists conditional symbols that were defined ($DEFINE/IFDEF) either in code,
or by options, but are not referenced ($IFDEF/$IFNDEF) in the code. Those conditional
symbols are probably unnecessary and can be removed.

See also:

 Reference Reports

14.4.20 Directives Report

Targets: From Delphi 6

This report displays information about various directives.

Sections:

DIRE1-Identifiers marked with the “deprecated” directive
DIRE2-Identifiers marked with the “experimental” directive

Reports 163

Copyright © 2001-2025 Peganza

DIRE3-Identifiers marked with the “library” directive
DIRE4-Identifiers marked with the “platform” directive
DIRE5-Subprograms marked with the “inline” directive

DIRE1-Identifiers marked with the “deprecated” directive
The “deprecated” directiveindicates that an item is obsolete or supported only for
backward compatibility.

DIRE2-Identifiers marked with the “experimental” directive
The “experimental” directive indicates that the identifier is created for experimental
purposes.

DIRE3-Identifiers marked with the “library” directive
The “library” directive indicates that the identifier may not exist or the implementation
may vary considerably on different library architectures.

DIRE4-Identifiers marked with the “platform” directive
The “platform” directive indicates that the identifier may not exist or that the
implementation may vary considerably on different platforms.

DIRE5-Subprograms marked with the “inline” directive
This sections lists subprograms that are marked with the “inline” directive.

See also:

 Reference Reports

14.4.21 To-Do Report

Targets: Delphi 5 and later

This report displays information about To-Do items that are entered in the source code or
by the IDE. Results are sorted after module, priority and category.

Sections:

TODO1-Open To-Do items
TODO2-Closed To-Do items

TODO1-Open To-Do items
This section lists open To-Do items. For each item, the text, module, priority, owner and
category is displayed.

Pascal Analyzer164

Copyright © 2001-2025 Peganza

TODO2-Closed To-Do items
This section lists closed To-Do items.

See also:

 Reference Reports

14.4.22 Module Call Tree Report

Targets: All

This report shows a call tree for modules. It shows how modules “use” each other by
inclusion in the uses lists in the interface and implementation sections.

Example:

Module Call Tree:
--

psearch
PsForm
StBrowsr
SsBase
SsConst

SsConst
RzPanel
RzCommon
RzButton
RzCommon

RzStatus
RzCommon
RzPrgres
RzCommon

RzPanel...
RzSysRes

PsEngine
StStrL
StBase
StConst

StBase...
SsBase...
GTimer
GCommon

StStrL...

Branches are not repeated. The sequence “...” marks a branch that already has been
written.

See also:

 Reference Reports

Reports 165

Copyright © 2001-2025 Peganza

14.4.23 Help Report

Targets: All except BP7

The Help Report gives you information about the linkings between help context values in
your Delphi project and the help include file.

Sections:

HELP1-All help context values
HELP2-Help context values that are not set in DFM files
HELP3-Help topics missing

HELP1-All help context values
This section lists all help context numbers that are used in the source code (set in DFM
files).

HELP2-Help context values that are not set in DFM files
This section lists help context numbers that exist in the help include file,but are not used
in the source code.

HELP3-Help topics missing
This section lists all help topics that are missing from the help include file. The help
context numbers are used in the source code, but are not listed in the include file.

The help include file, should consist of lines with this format:

TopicName = TopicNumber

See also:

 Reference Reports

14.4.24 Searched Strings Report

Targets: All

This report searches for strings in the source code. It reports the presence or the lack of
strings. It does not matter if the strings are found in code that may not be compiled,
because of compilation directives.

You may use this report for example to verify that all your files contain your copyright
notice, or that they contain specific include files etc.

Sections:

Pascal Analyzer166

Copyright © 2001-2025 Peganza

SEAR1-Found strings
SEAR2-Not found strings

SEAR1-Found strings
This section lists files where the strings are found.

SEAR2-Not found strings
This section lists files where the strings are not found.

See also:

 Reference Reports

14.4.25 Map File Report

Targets: All

The Map File Report is based on a MAP file, and reports which modules (units) that are
included in the executable. You can use it to verify that there are not any modules linked
in that should not be.

Sections:

MAPF1-Linked modules
MAPF2-Linked modules by size

MAPF1-Linked modules
This section lists modules that are included in the executable according to the MAP file.
Size in bytes is also displayed.

Example:

MAPF1-Linked modules:
--

BAbsRpt (22076)
BContRpt (2904)
BGlobals (160)
BSelFile (2640)
BThread (172)
BUtils (164)
GBrowEve (496)
GBrowUti (1556)
GControls (2316)

Reports 167

Copyright © 2001-2025 Peganza

GDelphiBitmaps (708)
GDyn2Arr (784)
GDynArr (4320)
GFont (120)
GGlobals (172)
..

MAPF2-Linked modules by size
This section lists modules (sorted by size) that are included in the executable according
to the MAP file.

Example:

MAPF2-Linked modules by size:
--

PFuncs (730940)
PPreXE8 (653652)
PPre10 (650076)
PPre101 (640536)
PPreXE7 (551948)
PPreXE6 (538068)
PPreXE5 (538040)
JclStrings (526988)
PPreXE4 (446668)
System.Classes (288604)
PPreXE3 (262884)
..

See also:

 Reference Reports

14.4.26 Clone Report

Targets: All

The Clone Report tries to identify similar sections of code (code clones).

Please note that this report takes relatively long time to generate. But you should not
need to run it very often.

Sections:

CLON1-Similar subprograms internally in module
CLON2-Similar subprograms over all modules

CLON1-Similar subprograms internally in module

Pascal Analyzer168

Copyright © 2001-2025 Peganza

This section lists subprograms within the same module, with similar code. Only
subprograms with at least five lines of code are considered.
The setting for minimum decision points is applied. Also subprograms that are
overloaded, or contain any assembler code will not be examined.

There is also a setting, "Min DP" or minimum decision points. A subprogram must have at
least this minimum value to be examined. The default value is 1, meaning that all
subprograms will be considered, unless they are empty.

A percentage is calculated to indicate the similarity between the two compared
subprograms. A value of 0% meaning a perfect match.

When the report format is text or HTML, the display shows for each compared pair of
functions, a top line with the percent value and the names of the two subprograms and
their line numbers.

Example:

Code snippets are displayed for the two similar sections. Double-click on the first line
(first or second subprogram name) to jump to the relevant code section in the source (or
in the Delphi IDE depending to your settings).

Reports 169

Copyright © 2001-2025 Peganza

CLON2-Similar subprograms over all modules
This section lists subprograms over all modules, with similar code. Only subprograms
with at least five lines of code are considered.
The setting for minimum decision points is applied. Also subprograms that are
overloaded will not be examined.

A percentage is calculated to indicate the similarity between the two compared
subprograms. A value of 0% meaning a perfect match.

When the report format is text or HTML, the display shows for each compared pair of
functions, a top line with the percent value and the names of the two subprograms and
their line numbers.

Example:

Code snippets are displayed for the two similar sections. Double-click on the first line
(first or second subprogram name) to jump to the relevant code section in the source (or
in the Delphi IDE depending to your settings).

Here is an example of a not perfect match, but where the code snippets are similar:

Pascal Analyzer170

Copyright © 2001-2025 Peganza

See also:

 Reference Reports

14.5 Class Reports

The class reports are:

 Class Index Report

 Class Summary Report

 Class Hierarchy Report

 Class Field Access Report

See also:

Reports
All Reports

14.5.1 Class Index Report

Targets: All

This report presents important facts about every class in the class hierarchy, like type of
class member and scope. More specific, it presents for every method the scope and
inheritance information.

**
* Class Index Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *

Reports 171

Copyright © 2001-2025 Peganza

**

TAbstractCache in GCACHE (13) inherits from TObject

 Name Type Scope Directive Current/Introduced
 --------------------- ----------- ---------------- --------- ------------------

 AddToCache Procedure Public Static TAbstractCache -
 Count Property Public Static TAbstractCache -
 Create Constructor Public Virtual TAbstractCache TObject
 CreateDates Field Private Static TAbstractCache -
 CreateTimes Field Private Static TAbstractCache -
 DeleteAll Procedure Public Static TAbstractCache -
 DeleteEntry Procedure Public Virtual TAbstractCache -
 DeleteExpiredEntries Procedure Public Static TAbstractCache -
 DeleteUnRequested Procedure Public Static TAbstractCache -
 Destroy Destructor Public Override TAbstractCache TObject
 Expired Function Public Static TAbstractCache -
 Get Procedure Public Static TAbstractCache -
 GetNumCacheEntries Function Protected Static TAbstractCache -
 GetParam Function Public Static TAbstractCache -
 GetParamsDoc Procedure Public Static TAbstractCache -
 Hits Field Private Static TAbstractCache -
 IndexInCache Function Public Static TAbstractCache -
 MaxEntries Field Private Static TAbstractCache -
 Params Field Private Static TAbstractCache -
 TimeLimitMins Field Private Static TAbstractCache -

TObjectCache in GCACHE (59) inherits from TAbstractCache in GCACHE (13)

 Name Type Scope Directive Current/Introduced
 --------------------- ----------- ---------------- --------- ------------------

 AddObjectToCache Procedure Public Static TObjectCache -
 Create Constructor Public Virtual TObjectCache TAbstractCache
 DeleteEntry Procedure Public Override TObjectCache TAbstractCache
 Destroy Destructor Public Override TObjectCache TAbstractCache
 FreeMemory Procedure Public Virtual TObjectCache -
 FreeOnDelete Field Private Static TObjectCache -
 GetObjectFromCache Function Public Static TObjectCache -
 Pointers Field Private Static TObjectCache -

There are two options available for this report:

Show ancestors

If selected, also members for the ancestors will be included in the lists.

Default = False

Sorted members

If selected, the members will be listed alphabetically, otherwise in source code order.

Default = True

See also:

 Class Reports

14.5.2 Class Summary Report

Targets: All

This report presents for every class a table of the methods, how many are static,
inherited etc.

Pascal Analyzer172

Copyright © 2001-2025 Peganza

**
* Class Summary Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *
**

TAbstractCache in GCACHE (13) inherits from TObject

 Inherited New Total
 --------- --- -----
 Constructors 1 1 2
 Destructors 1 1 2
 Procedures 7 7 14
 Functions 16 4 20

TObjectCache in GCACHE (59) inherits from TAbstractCache in GCACHE (13)

 Inherited New Total
 --------- --- -----
 Constructors 2 1 3
 Destructors 2 1 3
 Procedures 14 3 17
 Functions 20 1 21

See also:

 Class Reports

14.5.3 Class Hierarchy Report

Targets: All

This report creates a hierarchical list of all classes. Use this list to get an understanding
of the class hierarchy.

**
* Class Hierarchy Report for *
* C:\PROJEKT\RAMVERK\GCACHE.PAS *
**

TAbstractCache in GCACHE (13)
TObjectCache in GCACHE (59)

TPointerCache in GCACHE (75)
TStringCache in GCACHE (46)

TIntList in GIntList (16)
TDoubleIntList in GIntList (26)

See also:

 Class Reports

14.5.4 Class Field Access Report

Targets: All

This is a list of all class fields that are accessed directly from the outside. This means that
they are not accessed by means of a property. OOP purists consider this bad practice,
and you should avoid this.

**
* Class Field Access Report for *
* C:\PROJEKT\NEWPAL\CHECK.DPR *
**

Reports 173

Copyright © 2001-2025 Peganza

F : Untyped File ClassField GFiles\TBinaryFile (57)

Referenced from these locations (1):

FixMissingCharInFile Func, Interfaced GFiles (191)

See also:

 Class Reports

14.6 Control Reports

The control reports are:

 Control Index Report

 Control Alignment Report

 Control Size Report

 Control Tab Order Report

 Control Warnings Report
 Property Value Report
 Missing Property Report
 Form Report

 Events Report

The control reports deal with Delphi form files (DFM/NFM/XFM-files).
These reports are not available when the compiler target is Borland Pascal 7.

See also:

Reports
All Reports

14.6.1 Control Index Report

Targets: All except BP7

This is a list of all controls that are included in form files (DFM-files). Use this report to
get a general view of the controls on your forms. Because it only lists controls that are
included in the DFM-file, controls from inherited forms will not show up in descendant
forms. This is of course unless they change some property, so that they are represented
in the DFM-file.

**
* Control Index Report for *
* C:\PROJEKT\PSEARCH\PSEARCH.DPR *
**

List of all controls (33):

Module: psform

 CmdSave : TBitBtn
 CmdSearch : TBitBtn
 GroupBox1 : TGroupBox
 Label3 : TLabel

Pascal Analyzer174

Copyright © 2001-2025 Peganza

 Memo : TMemo
 chkCaseSensitive : TCheckBox
 chkIncludeSubFolders : TCheckBox
 chkListAllSearched : TCheckBox
 chkReadOnly : TCheckBox
 CmdSelStartDir : TButton
 Label1 : TLabel
 Label2 : TLabel
 txtPattern : TEdit
 txtRootDir : TEdit

See also:

 Control Reports

14.6.2 Control Alignment Report

Targets: All except BP7

Sections:

COAL1-Horizontal alignment (max allowed space is 10 pixels)
COAL2-Vertical alignment left (max allowed space is 10 pixels)

This report gives a list of the alignment of the controls. You may use this report to detect
cases of bad alignment between controls. For instance, if two buttons have a
Top-property value of 20 and 26, they are supposed to be aligned, and a horizontal
alignment warning is triggered.

See also:

 Control Reports

14.6.3 Control Size Report

Targets: All except BP7

This report gives a list of the controls and their sizes. You may use this report to detect
unwanted size differences. For instance, for aligned buttons on a form, you probably
want them to be of the same size.

Sections:

COSI1-Horizontal size
COSI2-Vertical size

**
* Control Size Report for *
* C:\PROJEKT\PSEARCH\PSEARCH.DPR *
**

Horizontal size:

 (none)

Reports 175

Copyright © 2001-2025 Peganza

Vertical size:

Module: psform Parent: GroupBox2

 chkOnlyWeb (Width = 77) different size relative chkAllFiles (Width = 157)
 chkOnlySql (Width = 69) different size relative chkAllFiles (Width = 157)
 chkOnlyVB (Width = 117) different size relative chkOnlyDelphi (Width = 125)
 chkOnlyTxt (Width = 81) different size relative chkOnlyDelphi (Width = 125)

Module: psform Parent: GroupBox1

 chkCaseSensitive (Width = 101) different size relative chkIncludeSubFolders (Width = 109)
 chkListAllSearched (Width = 125) different size relative chkIncludeSubFolders (Width = 109)
 chkReadOnly (Width = 125) different size relative chkIncludeSubFolders (Width = 109)
 txtPattern (Width = 197) different size relative txtRootDir (Width = 325)

See also:

 Control Reports

14.6.4 Control Tab Order Report

Targets: All except BP7

This report lists all controls that possibly have a bad tab order. Normal tab order is
considered as left to right, up down, as given by the TabOrder property.

It is assumed that “TabStop = true” is activated for all controls, unless “TabStop = false”
is explicitly set in the DFM/XFM-file. Depending on the default value of the TabStop
property, this assumption is sometimes incorrect. A bad tab order as listed in this report,
is consequently not always a cause of alarm.

Sections:

COTA1-TabOrder probably wrong
COTA2-TabOrder possibly wrong

**
* Control Tab Order Report for *
* C:\PROJEKT\PSEARCH\PSEARCH.DPR *
**

TabOrder probably wrong:

Module: psform Parent: PSMainForm

Memo (TabOrder=0) tabs upwards to GroupBox1 (TabOrder=1)

TabOrder possibly wrong:

Module: psform Parent: PSMainForm

RzStatusBar (TabOrder=3) tabs upwards and right to CmdSearch (TabOrder=4)

Module: psform Parent: GroupBox1

txtPattern (TabOrder=1) tabs upwards and right to chkIncludeSubFolders (TabOrder=2)

Pascal Analyzer176

Copyright © 2001-2025 Peganza

chkListAllSearched (TabOrder=4) tabs upwards and right to CmdSelStartDir (TabOrder=5)

Module: psform Parent: GroupBox2

chkOnlySql (TabOrder=3) tabs upwards and right to chkOnlyDelphi (TabOrder=4)

See also:

 Control Reports

14.6.5 Control Warnings Report

Targets: All except BP7

This report presents several lists, helping you spot possible errors in your form files.

Sections:

COWA1-Controls that overlap visually
COWA2-Labels with Caption-property that does not end in ":"
COWA3-Conflicting accelerators
COWA4-Labels (or static texts) that have accelerators but FocusControl is not set
COWA5-Conflicting shortcuts

COWA6-Buttons/menu items with OnClick-event that is unassigned
COWA7-Menu items that have HelpContext=0
COWA8-Hint is not activated

__

COWA1-Controls that overlap visually

This is a list of controls that overlap each other visually, possibly hiding each other.

__

COWA2-Labels with Caption-property that does not end in ":"

Labels (TLabels) above or to the left of other controls usually end their caption with the
char “:”. This lists all labels that not confirm to this. Of course, this does not apply to
labels that are standalone and just used for display purposes. PAL cannot know the
purpose of a label and reports all labels with missing “:”.

A false warning is generated for captions that are so long that they span over more than
one line in the DFM file.

__

COWA3-Conflicting accelerators

This is a list of all controls with conflicting accelerators in the Caption property. Some

Reports 177

Copyright © 2001-2025 Peganza

types of controls are not reported even if they share the same accelerators, because they
do not conflict. Those are menu items on different sub menus, and controls that reside
on different TTabSheet pages of a TPageControl control.
__

COWA4-Labels (or static texts) that have accelerators but FocusControl is not set

Labels and static texts cannot receive focus. When an accelerator key is pressed, focus is
given to the control specified by the FocusControl property. It is an error to omit the
FocusControl property in this case.

__

COWA5-Conflicting shortcuts

This is a list of all menu items with conflicting shortcuts (key combination) (property
ShortCut).

__

COWA6-Buttons/menu items with OnClick-event that is unassigned

This is a list of all buttons and menu items with an unassigned OnClick-event. Normally
there should be an action on OnClick for these controls, so it indicates an error in the
code. Warnings are not created when the property Action is set. Buttons with
ModalResult set will be excluded from the list.

__

COWA7-Menu items that have HelpContext=0
This is a list of all menu items with a HelpContext property value of 0. Probably the menu
item has not been assigned a topic in the help file. Failing to assign a topic could trigger
this messagebox when the help system is invoked:

You can also use the Missing Property Report to generate this information. Add a
“TMenuItem;HelpContext” item to the check list.

__

COWA8-Hint is not activated
This is a list of all controls where the Hint property is set, and both ShowHint and
ParentShowHint properties are “false”.

Pascal Analyzer178

Copyright © 2001-2025 Peganza

See also:

 Control Reports

14.6.6 Property Value Report

Targets: All except BP7

This report shows values for selected properties in your Delphi forms. For instance, it can
show every value of the Caption property for all controls of type TButton. Or, show all
properties for controls of the type TLabel, or values for all properties with the name SQL,
regardless of the class type. Select which properties to monitor in the Options dialog.
Note that the displayed properties and values are those stored in the DFM file. This
means that a property possessing a default value is not shown.

**
* Property Value Report for *
* C:\PROJEKT\WBT\WBTSTORE.DPR *
**

GDbLogin

DBLoginDialog.BorderStyle = bsDialog
lblUserName.Caption = 'lblUserName'

GRtfMod

ModalRTFViewerForm.BorderStyle = bsDialog

GSelList

SelectListDialog.BorderStyle = bsDialog

See also:

 Control Reports

14.6.7 Missing Property Report

Targets: All except BP7

This report is similar to the Property Value Report. You specify one or more types and
properties that you want to monitor with this report, for example the class type
TCustomLabel and its Caption property. This report will then present a list of all
occurencies in DFM-files, where a TCustomLabel (or a descendant like TLabel) is used,
but where Caption has not been set.

**
* Missing Property Value Report for *
* C:\PROJECT\MISSPROP.DPR *
**

(2) Missing Property Value:
--

MissPropMain

lblWithoutCaption.Caption (TLabel)
UpDownWithoutAssociate.Associate (TUpDown)

Use this report to for example check that all your TLabel controls have their Caption

Reports 179

Copyright © 2001-2025 Peganza

property set, or that all TUpDown controls have set their Associate property.

For TButton and TBitBtn object with missing OnClick properties, warning will not be
given, if a ModalResult property value is set.
Another exception is for TBitBtn object with missing OnClick property, the warning will
not be given, if a Kind property value is set.

See also:

 Control Reports

14.6.8 Form Report

Targets: All except BP7

This report shows important properties for your Delphi forms. For instance, it shows the
value of the Position property. If you are like us, you want this property to always have
the value poScreenCenter. In this report, you can easily verify that all forms have the
correct value.

The Form Report does not report forms of type TDataModule or TWebModule (or their
descendants, because these forms are non-visual).

**
* Form Report for *
* C:\PROJECT\PSEARCH\PSEARCH.DPR *
**

Form Module BorderIcons BorderStyle FormStyle Position

psearch Sys+Min+Max bsSingle fsNormal poDefault MS Sans Serif
ZAbout Sys bsDialog fsStayOnTop poScreenCenter MS Sans Serif
ZLicFrm Sys bsDialog fsStayOnTop poScreenCenter MS Sans Serif

See also:

 Control Reports

14.6.9 Events Report

Targets: All except BP7

This report shows how events are linked to controls in your Delphi forms.

Sections:

EVEN1-Controls and linked events
EVEN2-Events and linked controls

**
* Events Report for *
* C:\PROJEKT\PIM\DETO.DPR *
**

Pascal Analyzer180

Copyright © 2001-2025 Peganza

(254) Controls and linked events:
--

Module: BAbout

CmdLicense.OnClick = CmdLicenseClick

Module: GFrView

btnFirst.OnClick = btnFirstClick
btnLast.OnClick = btnLastClick
btnNext.OnClick = btnNextClick

See also:

 Control Reports

Main menu 181

Copyright © 2001-2025 Peganza

15 Main menu

The main menu has seven submenus.

File menu
Edit menu
Search menu
View menu
Analysis menu
Options menu
Help menu

See also:

How to use PAL.EXE
How to use PALCMD.EXE
Introduction
Known limitations
Command Line Options for PAL.EXE
Main window

15.1 File menu

File|New Project (Ctrl+N)

Pascal Analyzer182

Copyright © 2001-2025 Peganza

This command creates a new blank project. Settings from the template for projects will
be used to initialize the new project.

File|New Multi-project (Ctrl+M)

This command creates a new blank multi-project. Settings from the template for
multi-projects will be used to initialize the new multi-project.

File|Open (Ctrl+O)

Open an existing Pascal Analyzer project or multi-project. The currently opened project is
active. There can only be one active project at any single time.

File|Reopen

Under this menu item you can reopen one of the latest opened projects.

File|Read Only

If an editor source file is open, use this menu command to toggle the read-only status.

File|Save (Ctrl+S)

This command saves the currently active editor source file. It will always also save the
currently active project.

File|Save Project As

With this menu command, you can save the current project under a different name.

File|Save Document As

If there is an editor window active, you can save the source file under a different name.

File|Save All

This command saves all open documents, and the current active project.

File|Close (Ctrl+F4)

This command closes the current document or report.

Main menu 183

Copyright © 2001-2025 Peganza

File|Close Project

This command closes the current active project.

File|Run Wizard

Run the wizard. The wizard assists you in selecting source code to analyze, and helps you
choose other settings that are important for the analysis. If you want complete control
over your analysis, use the Options dialog instead. Some of the settings provided by the
Options dialog cannot be set by the wizard.

File|Print (Ctrl+P)

Select between printing the entire viewer text, the selected report, or just the selected
text block. Please observe that the printed file may be very large.

File|Print Preview

This command shows a preview of the current editor document.

File|Printer Setup

Show Windows standard printer setup dialog box.

File|Page Setup

Show a page setup dialog for an editor document.

File|Exit

Quit the application. Your settings are saved to the file PAL.INI in your settings folder.

See also:

Main menu

Pascal Analyzer184

Copyright © 2001-2025 Peganza

15.2 Edit menu

Edit|Undo (Ctrl+Z)

Undo the latest action in the editor.

Edit|Redo

Redo the latest action in the editor.

Edit|Cut (Ctrl+X)

Cut the selected editor text to the clipboard.

Edit|Copy (Ctrl+C)

Copy the selected text to the clipboard.

Edit|Paste (Ctrl+V)

Copy the clipboard text to the active editor document

Edit|Select all (Ctrl+A)

Select all text in the currently selected report or editor document.

See also:

Main menu

Main menu 185

Copyright © 2001-2025 Peganza

15.3 Search menu

Search|Find (Ctrl+F)

Search for a string in the viewer or editor document. This function is not available for
reports in HTML format.

Search|Replace (Ctrl+H)

Search and replace a string in the current editor document.

Search|Search/Replace Again (F3)

Repeat the last search/replace action. This function is not available for reports in HTML
format.

Search|Go to Line Number (Ctrl+G)

Select a line number, and move to that line. This function is not available for reports in
HTML format.

See also:

Main menu

Pascal Analyzer186

Copyright © 2001-2025 Peganza

15.4 View menu

View|Show Report List (F9)

Show/hide the report list. You may also click the hotspot button in the center of the bar.

View|Show Source Editor (F8)

Show/hide the source viewer window. You can also click the hotspot button in the center
of the bar.

View|Show Toolbar

Mark this menu item if you want the toolbar to appear.
Default = Yes

View|Arrange

Select how to arrange the report list window and the viewer window. Choose between the
following arrangements:

Reports Left, Viewer Right (default)
Reports Top, Viewer Bottom
Viewer Left, Reports Right
Viewer Top, Reports bottom

View|Back (Alt+Left)

Main menu 187

Copyright © 2001-2025 Peganza

Go to the previous editor location.

View|Forward (Alt+Right)

Go to the next editor location.

View|Previous Reference (Ctrl+Alt+Left)

For a selected identifier in the editor, go to the previous reference. The first reference for
an identifier is its declaration.

View|Next Reference (Ctrl+Alt+Right)

For a selected identifier in the editor, go to the next reference.

View|Class List (Ctrl+Alt+C)

Displays a list of all reported classes in the project. Select a class to go to its declaration
in the source code editor.

View|Module Subprogram List (Ctrl+Alt+S)

Displays a list of all subprograms in the module (unit). Select a subprogram to locate its
declaration in the source code editor.

View|Module Used Units List (Ctrl+Alt+U)

Displays a list of all units used by the module (unit). Select a unit to open its source code
file in the editor.

See also:

Main menu

15.5 Analysis menu

Analysis|Run (Ctrl+R)

Pascal Analyzer188

Copyright © 2001-2025 Peganza

Start the analysis. PAL scans the selected source file. Any units specified in the uses
statement of a unit, will optionally be read, if they are found. This is a recursive process,
and potentially a lot of source code can be involved. For Delphi source code, if a
DFM/NFM/XFM-file is found for a PAS-file, the DFM/NFM/XFM-file will be parsed and
examined as well.

If PAL finds any include directives (like {$I MYSOURCE.INC}) in the source code, these
files will also be read and parsed.

Even if PAL can detect many syntax errors, it is required that the code is possible to
compile. Otherwise, the results may be incorrect and possibly misleading. So, as a rule,
always make sure that the code compiles, before examining it with PAL.

Also bear in mind, that the memory consumption and the time needed to parse and
produce reports is proportional to the amount of source code and the number of reports
selected. For large projects, with lots of source code, it is often wise to start generating
just one or a few reports.

Analysis|Stop

This command stops (cancels) the analysis. Please observe that it may take a few
seconds before the analysis stops. Just the Status Report is created in this case.

See also:

Main menu

15.6 Options menu

Options|Project Properties... (F11)

Main menu 189

Copyright © 2001-2025 Peganza

Select properties for the currently active project or multi-project. The properties are
divided over a number of tab pages in the dialog window. The dialog window has
somewhat different content depending on whether a project or a multi-project is active.

Properties - General
Properties - Reports
Properties - Source
Properties - Format
Properties - Parser
Properties - Switches

Click OK to confirm your selections and return to the main window.

When selecting paths, conditional defines and other parameters, a special selection
dialog is shown:

In this dialog box, select items and add them to a list. For instance, to add a search
folder, enter the path in the input field below the list box. Then press the Add-button to
add the folder to the list. Click on the ellipsis button to select a folder by browsing. When
selecting excluded folders, it is possible to mark a checkbox, meaning that also
subfolders are excluded. Those folders will show up in the main dialog box with a suffix
“<+>” attached.

Options|Set as Template

Select this command to save the currently active project or multi-project as a template.

Pascal Analyzer190

Copyright © 2001-2025 Peganza

The template will be used to initialize new projects. The settings for the templates are
stored in the PAL.INI file.

Options|Report Viewer Font

Select a non-proportional font for the report viewer window.
Default = Courier New 10 pt, black color

Options|Report Viewer Color

Select a background color for the report viewer window.
Default = White

Options|Source Editor Font

Select a font for the source editor window.
Default = Courier New, 8 pt, black color

Options|Source Editor Read-Only Font

Select a font for the source editor window, to use when the editor file is read-only.
Default = Courier New, 8 pt, black color

Options|Source Editor Color

Select a background color for the source editor window. Default = White

Options|Source Editor Read-Only Color

Select a background color for the source editor window, when the source file is read-only.
Default = White

Options|Report Tree Font

Select a font for the report tree. Default = MS Sans Serif, 8 pt

Options|Report Tree Color

Select a background color for the report tree. Default = White

Options|Preferences… (F12)

Select this command to set options for the entire application. This dialog window has
three tab pages.

Main menu 191

Copyright © 2001-2025 Peganza

General
Source code
Editor

See also:

Main menu

15.6.1 Properties - General

For an ordinary Pascal Analyzer project, the General tab looks like this:

Description
Optionally enter a descriptive text for the project.

Pascal Analyzer192

Copyright © 2001-2025 Peganza

Main file
Select either a single source file for analysis, or an entire Delphi project (DPR-file), or an
entire Borland Pascal project (PAS-file). You can also select a Delphi package (DPK file).
PAL will automatically find and use the DPROJ file, if there is any. You can use
environment variables here, like for example, "$(MYPROJECTS)\Current\MyProj.dpr".

Preferable is to select a complete project (DPR- or DPROJ-file). Pascal Analyzer will then
have most chances of resolving identifiers and references.

You can also use a relative path. The path is then relative to the folder where the project
file (PAL-file) is located.

Example:

The project file is saved at C:\Projects\MyProj.pap. The main file is
C:\Projects\Mine\MyProj.dpr.

You could use the relative path "..\Mine\MyProj.dpr" for the main file.

Selected files
There are three possible settings:

All files
PAL will parse and analyze all found files. This is the recommended selection. The results
will be better if PAL has access to as much source code as possible. If you want to limit
the output in reports, use the option to exclude folders from reporting on the Parser tab
page.

Main files and directly used (default)
The main files and those files (units) that are listed in the uses lists of the main file, will
be parsed and analyzed.

Main file
Only the main file will be parsed and analyzed

Report root folder
Specify the folder where PAL writes the report files upon completion of the analysis. For
example, if a project called “MyProject” is analyzed, the report files will be written to a
folder “\MyProject” just below the report root folder. The folder will be created if it does
not exist.

The default output root folder is in a folder below "My Documents", like
"C:\Documents and Settings\<account>\My Documents\Pascal
Analyzer\Projects\Output".

The files are named MYPROG.TXT (or MYPROG.HTM for HTML reports) when MYPROG is
examined. If the backup option is selected and a file with the same name exists, this file
is saved under the name MYPROG.~XT (or MYPROG.~TM for HTML reports).

Main menu 193

Copyright © 2001-2025 Peganza

Environment variables can also be used here, if you wish.

You can also use a relative path. The path is then relative to the folder where the project
file (PAP-file) is located.

Example:

The project file is saved at C:\Projects\MyProj.pap. If you want the report root folder in
the same folder, just enter "." as the report root folder.

Create backup of report files
Default = Yes

Mark this checkbox if PAL should create backup files when reports are written. Backup
files are given the extension ~XT (or ~TM for HTML reports or ~ML for XML reports).
Whenever a new report text file is written, any existing report file will be copied to a
backup file.

Show constants
Default = Yes

If you select this option, constants are reported.

Show types

Default = Yes

If you select this option, types are reported.

Show subprograms
Default = Yes

If you select this option, subprograms (procedures/functions) are reported.

Show variables
Default = Yes

If you select this option, variables are reported.

Show labels
Default = Yes

If you select this option, labels are reported.

Show class fields

Default = Yes

If you select this option, class fields are reported.

Show parameters
Default = Yes

Pascal Analyzer194

Copyright © 2001-2025 Peganza

If you select this option, parameters are reported.

Show record fields
Default = Yes

If you select this option, record fields are reported.

Show properties
Default = Yes

If you select this option, properties are reported.

Show local identifiers
Default = Yes

If you select this option, local identifiers are reported.

Sort mode for report identifier lists
Default is sorting by Name-Module-Kind

Select the type of sorting you want for identifier lists in the reports. This option affects all
reports that show identifier in lists.

Sort modes:

Name–Module-Kind (sort first by Name, then by Module, then by kind of identifier)
Name-Kind-Module
Module-Name-Kind
Module-Kind-Name
Kind-Name-Module
Kind-Module-Name

Suppressed lines-Activate
Default = False

Check this option if you want to suppress lines that are marked with the suppressed lines
maker (see the following text block).

N.B. Only activate this option if you really have lines marked, because the process will be
slower.

Suppressed lines-Marker for suppressed lines
Default = PALOFF

By adding a comment:

//PALOFF

.. as a comment to a source code line, means that PAL will not report any issues
encountered on that line. If you place the comment on a line where an identifier is
declared, that identifier will not be reported. This is the most effective way to get rid of
all issues for an identifier.

Main menu 195

Copyright © 2001-2025 Peganza

Note also that you can use curly brackets, like "{PALOFF}". Like for "//" blanks are
allowed, for example "{ PALOFF }".

Example

type
 TGlobalDLLData = record
 Path : string[255];
 LineNr : integer; //PALOFF (1-based line number in source module)
 end;

In the code example above, LineNr will not be reported. Observe that the marker must
be first in the comment string on the line, and that it is allowed to add comment text to
the right of the marker.

In some report sections you will find that even if you place the comment on the line
which you believes make PAL report the identifier, it will not have any effect. Then try
placing the comment on the line where the identifier is declared.

It is possible to select what string should be used as the marker. Default value for the
suppression marker is "PALOFF", but you can change this to something else. Blank
spaces between "//" and the suppression marker are allowed. You can also have more
text to the right of the marker, like:

//PALOFF because false warning otherwise

To select only some report sections that will be excluded use this syntax:

Examples:

//PALOFF WARN8 (report section WARN8 will not be reported)

//PALOFF WARN2;OPTI8;OPTI2 (report sections WARN2, OPTI8, OPTI2 will not be
reported)

//PALOFF OPTI (all report sections for the Optimization Report will be excluded)

//PALOFF STWA2;WARN;OPTI4 (STWA2 and OPTI4 will be excluded, plus all sections in
the Warnings Report)

When a multi-project is currently active, the General tab holds somewhat different
content:

Multi-projects
Press the ellipsis button to select the Pascal Analyzer projects that make up the
multi-project. A multi-project must have at least two connected projects.

Remove
Press this button to remove a project from the list.

Exclude identifiers from these folders
Press the ellipsis button to select folders that will be excluded from reports.

The rest of the fields on this tab page have the same meaning as for ordinary projects.

Pascal Analyzer196

Copyright © 2001-2025 Peganza

See also:

Options menu
Properties - Format
Properties - Parser
Properties - Reports
Properties - Source
Properties - Switches

15.6.2 Properties - Reports

The Reports tab is the same for normal projects and multi-projects. However, when a
multi-project is active, only those reports and settings that are relevant for a
multi-project, are enabled.

Main menu 197

Copyright © 2001-2025 Peganza

On this tab select the reports you want PAL to create for the current project.

Reports with two or more sections are underlined. Click on the underlined text to open up
a new dialog window. In this dialog, you can select the sections that you want to
generate.

Also for the Convention Report, use the Prefix button to select prefixes for report sections
CONV24, CONV25, CONV26 and CONV27.

As default, all sections are created.

If the report caption is displayed in red color, this means that the report is selected, but
there are no sections selected for it. If the caption is displayed in blue color, it indicates
that some sections, but not all, are selected. Green color means that the default report
sections are selected. Black color indicates that all sections are selected.

Pascal Analyzer198

Copyright © 2001-2025 Peganza

To select all reports, press the special button (or Alt+A). To deselect all reports, press
the special button (or Alt+D)
For some of the reports, you may set further options by pressing the Edit-button. These
reports are the Prefix Report, Property Value Report and the Missing Property Report.

For the Prefix Report, this button will open a dialog, where you enter definitions for the
prefixes that you want checked:

Enter a definition on the form typename;prefix like

TCustomLabel;lbl

In this case, PAL will check that every TCustomLabel object (or descendant of a
TCustomLabel, like TLabel) that is found, begins with the (case-sensitive) letters “lbl”.

If you press the button Set Defaults the following prefix definitions are inserted:

TBitBtn;btn
TButton;cmd

TCheckBox;chk
TComboBox;cbo
TCustomCheckBox;chk
TCustomComboBox;cbo

Main menu 199

Copyright © 2001-2025 Peganza

TCustomEdit;txt
TCustomGroupBox;gb
TCustomLabel;lbl
TCustomListBox;lb
TCustomMemo;mem
TCustomPanel;pnl
TCustomRadioGroup;rg

TEdit;txt

TGroupBox;gb

TImage;img

TLabel;lbl
TListBox;lb

TMainMenu;mnu
TMemo;mem
TMenu;mnu

TPanel;pnl
TPopupMenu;mnu

TRadioButton;rb
TRadioGroup;rg

TSpeedButton;btn

These prefixes are just suggestions; you may want to use your own prefix conventions.

The ordering of the items is irrelevant; however you may want to keep them in
alphabetical order for clarity.

Also note that prefixes are evaluated for ancestors. For example, if you have entered a
single rule “TCustomEdit;txt” and a TEdit-control exists with the name “Edit1”, it will be
marked as having a bad prefix. There is no rule entered for TEdit, so the rule for the
ancestor TCustomEdit will be applied. This requires that the source code for TEdit is
parsed, so that PAL is able to determine that the ancestor is TCustomEdit.

For the Property Value Report and Missing Property Report, this button will open a dialog,
where you enter definitions for the properties that you want documented:

Pascal Analyzer200

Copyright © 2001-2025 Peganza

Enter a definition on the form typename;property like

TCustomLabel;Caption

In this case, PAL will document the value of every TCustomLabel Caption property (or
descendant of a TCustomLabel, like TLabel) that is found in a DFM file. There are some
extensions for the Property Value Report only, for example if you enter:

;SQL

every property with the name “SQL” will be documented regardless of its type.

If you enter

TButton;

every property of TButton will be documented.

For the Complexity Report, there are two additional numeric input fields:

Max. length identifier (default = 15)
Max. rated items (default = 10)

Those apply to the section in the Complexity Report listing long identifier names, and the
sections presenting rating lists.

The checkbox “Details” for the Totals Report should be checked if you want PAL to

Main menu 201

Copyright © 2001-2025 Peganza

generate detail info for this report.

There is also a checkbox for charts. Mark this checkbox if you want PAL to generate
charts (image files) for the Complexity Report. This only applies for HTML reports and the
default value is True.

There is a checkbox "Also subfolders" for the Third-party dependencies Report. Mark this
checkbox if you want identifiers in subfolders to the main folder to be considered as
"native" code, and not as third-party code. In previous versions where this option did not
exist, identifiers in subfolders were always treated as third-party code. Most often,
third-party code is not located below the main folder, and this option may be of value in
those situations.

You can also explicitly mark folders as "own". Press the button "Own..." and select those
folders, optionally with subfolders.

There is a checkbox "Extra info" for the Uses Report. Mark this checkbox if you want to
output extra information about units, for example if they have an initialization section.
Default is True.

Also there is a checkbox "Only warnings" for the Uses Report. Mark this checkbox if you
want PAL to only report those units that are either unnecessary or could be moved to the
implementation uses list. Default is False, which means that all units are written.

For the Call Tree Report and the Reverse Call Tree Report, there is an option "All". Mark
this checkbox if you want PAL to generate a complete tree, even including repeating
branches when possible. The default value is False. (This option was displayed as
"Complete" in previous versions.)
The tree reports both have an option "Extend". If selected (default is False), the reports
will also include root subprograms that both call and are called.

For the Call Tree Report, Reverse Call Tree Report, and Exception Report, it is also
possible to select the level of indentation. (Default 1).

For the Class Index Report, there is a checkbox "Sorted members". If selected, the
members will be listed alphabetically, otherwise in source code order (Default True).

For the Clone Report, there is a setting "Min DP" or minimum decision points. This setting
defines the minimum decision points a subprogram should have to be examined by this
report. Default value = 1.

For the Control Alignment Report, there is an option to select whether left- or right
alignment should be examined. (Default LEFT).

Hide empty report sections
Default = False
Check this option if you do not want to show empty report sections (in the reports
themselves and in the report selection tree).

See also:

Pascal Analyzer202

Copyright © 2001-2025 Peganza

Options menu
Properties - General
Properties - Format
Properties - Source
Properties - Parser
Properties - Switches

15.6.3 Properties - Format

On this tab, you can select options for the report format.

Report format
Default = HTML

Select between reports in text, HTML or XML. The HTML format (default) is suitable for

Main menu 203

Copyright © 2001-2025 Peganza

web publishing (Internet). There are also more ways to customize the layout and
appearance of the reports. With HTML, the Complexity Report also adds a few illustrative
charts to the contents.

On the other hand, an advantage with text files is that they are somewhat faster to load.
XML is the preferred format for transferring PAL data to for instance a database.
However, the XML format is rather spacious and those files can become very large and
the time to load them for viewing is often long.

You can view the HTML and XML reports in PAL's main window, or in your browser
(e.g. MS Internet Explorer, Netscape). PAL uses Microsoft's Shell and Doc Extensions API.
Thus, when you view the HTML reports in PAL, you are actually viewing them in the same
way as if you view them in MS Internet Explorer. Even the context sensitive menus are
available (via mouse right-click).

To load the HTML reports in your browser, select MyProj_Index.htm if frames are used,
where MyProj is the name of the parsed main file. If frames are not used, load
Contents.htm when several report files are created, or MyProj.htm if all reports belong to a
single file.

Create subfolders
Default = Yes

If you select this option, PAL will create a separate subfolder beneath the report folder for
each project that is analyzed. E.g. if a Delphi project Gcache.dpr is analyzed and the
report folder is set to D:\Data\PALReports a folder D:\Data\PALReports\GCache is
created. The generated report files are stored in that folder.

One file for each report
Default = Yes

Select this option if you want a single report file (text or HTML) for each report.
The reports are named Status.htm, Warnings.htm etc.

Include date-time in report header
Default = Yes

Mark this checkbox if you want a text string with the current date and time included at
the top of each report.

Use frames
Default = Yes

Check this option to generate HTML frame pages. This option is only available when
HTML reports are selected. The option "One file for each report" (see above) must also be
selected. If frames are used, a left frame page will keep an index to the different reports.

Use frame borders
Default = Yes

Check this option to generate frame borders. This option is only available when HTML
reports and frames are selected.

Pascal Analyzer204

Copyright © 2001-2025 Peganza

Show sections in tree
Default = Yes

Check this option to include report sections in the report tree in the main window. This
will allow you to jump directly to a report section by clicking on the appropriate line in
the report tree.

Show section index
Default = Yes

For reports that are divided in several sections, like the Warnings Report, you may select
this option to let PAL generate an index at the top of each report. This option is only
available when HTML reports are selected.

Show time for report
Default = No

Check this option to include information about the time needed to generate a report. This
information is written at the bottom of each report. Time usage for each section in the
report is also written.

Report mask
Specify the format mask to use when displaying a report caption. The mask will only be
used when section counters are displayed, otherwise only the plain caption is displayed.

For example, the mask:

%C-%H (%1, was %2)

will for the Optimization Report display:

“OPTI-Optimization Report (3, was 5)”

Those placeholders can be used:

%C report code, like "WARN1" etc, see report topics
%H report caption
%1 counter (reported items)
%2 old counter

The default mask is:

%H (%1, was %2)

Report mask (no hits)
Specify the format mask to use when displaying a report caption. The mask will only be
used when section counters are not displayed.

For example, the mask:

%C-%H

will for the Call Tree Report display:

Main menu 205

Copyright © 2001-2025 Peganza

“CTRE-Call Tree”

Those placeholders can be used:

%C report code
%H report caption

The default mask is:

%C-%H

Report section mask
Specify the format mask to use when displaying a report section caption. The mask will
be used when section counters are displayed.
For example, the mask:

%C-%H (%1, was %2)

will for one section in the Optimization Report, display:

“OPTI4-Virtual methods (procedures/functions) that are not overridden (3, was 5)”

Those placeholders can be used:

%C report code, like "WARN1" etc, see report topics
%H report caption
%1 counter (reported items)
%2 old counter

The default mask is:

%H (%1, was %2)

Report section mask (no hits)
Specify the format mask to use when displaying a report section caption. The mask will
be used when section counters are not displayed.

For example, the mask:

%C-%H

will for one section in the Object-oriented Metrics Report, display:

“OOME1-Weighted methods per class (WMC)”

Those placeholders can be used:

%C report code
%H report caption

The default mask is:

Pascal Analyzer206

Copyright © 2001-2025 Peganza

%H

Plus color
Press this button to select the color used for “plus” captions, e.g. when the number of
“new” warnings is greater than the number of “old” warnings, like in this caption:

“(5) Identifiers never used (was 3)”

Minus color
Press this button to select the color used for “minus” captions, e.g. when the number of
“new” warnings is greater than the number of “old” warnings, like in this caption:

“(3) Identifiers never used (was 5)”

Neutral color
Press this button to select the color used for “plus” captions, e.g. when the number of
“new” warnings is the same as number of “old” warnings, like in this caption:

“(5) Identifiers never used (was 5)”

Selected color
Press this button to select the color used for the background of the selected item in the
report tree. You should make sure that this color fits together with the colors selected for
plus, minus and neutral (see above),

Style sheet
Default = (blank)

Pascal Analyzer includes a style sheet block with default settings in every HTML report.
If you want to use your own customized style sheet, enter the absolute or relative link to
it in
this input field. E.g. if the HTML reports are created in the D:\Data\PALReports\GCache
folder, and the style sheet file is in D:\Data\PALReports\PALstyles.css, you should
enter "../PALstyles.css".

If this field is blank, PAL will include the style sheet block, otherwise it will just
include a HTML link (<LINK REL) to the external style sheet file.

This is the style sheet block that is inserted at the top of each HTML file. You may use it
as a template when creating your own style sheet.

<STYLE TYPE="text/css">
<!--
 BODY{BACKGROUND: #FFFFC4; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 10pt}
 H1{COLOR: #000000; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 14pt}
 TD{COLOR: #000000; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 10pt}
 .Attention{COLOR: #FF0000; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 10pt}
 .IdN{COLOR: #000000; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 10pt; FONT-WEIGHT: BOLD}
 .IdT{COLOR: #000000; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 10pt; FONT-STYLE: ITALIC}
 .IdL{COLOR: #000000; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 10pt}
 .Contents{COLOR: #0000FF; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 10pt; FONT-WEIGHT: BOLD}
 .Label{COLOR: #0000FF; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 10pt; FONT-WEIGHT: BOLD}
 .Legend{COLOR: #0000FF; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 10pt}
 .Numeric{COLOR: #000000; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 8pt}
 .MainHeader{COLOR: #000000; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 10pt; FONT-WEIGHT: BOLD}
 .ReportHeader{COLOR: #000000; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 14pt; FONT-WEIGHT:
BOLD}
 .SectionHeader{COLOR: #000000; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 12pt; FONT-WEIGHT:
BOLD}

Main menu 207

Copyright © 2001-2025 Peganza

 .TableBorder{BORDER-BOTTOM: #000000 1px solid; BORDER-LEFT: #000000 1px solid; BORDER-RIGHT:
#000000 1px solid; BORDER-TOP: #000000 1px solid}
 .TableLegend{COLOR: #008080; FONT-FAMILY: Verdana,Arial; FONT-SIZE: 10pt; FONT-WEIGHT: BOLD}
-->
</STYLE>

The style sheet includes styles for the following classes:

Attention Text that points out anomalies, e.g. unused unit in Uses Report
IdN Identifier names, e.g. DrawCanvas
IdT Identifier type, e.g. Integer
IdL Identifier location, e.g. CodUtil(321)

Contents Text in contents list
Label Descriptive text like “Analyzed by” in the Status Report
Legend Descriptive text for an entire table, like “Abbreviations in Complexity
Report
Numeric Numeric, e.g. “350”, like in Totals Report

ReportHeader Report header
SectionHeader Section header
MainHeader Header in sections

TableBorder Table borders
TableLegend Legends in tables

Header include file
Default = (blank)

If you enter an URL in this field, PAL will include the file at the top of each HTML report.
Use this to include common header information on each page, like company name, logo
etc.

Footer include file
Default = (blank)

If you enter an URL in this field, PAL will include the file at the bottom of each HTML
report. Use this for common footer information.

Index frame style sheet
Default = (blank)

Pascal Analyzer includes a style sheet block with default settings in the index frame
HTML page. If you want to use your own style sheet, enter the absolute or relative link to
it in this input field. E.g. if the HTML reports are created in the
D:\Data\PALReports\GCache folder, and the style sheet file is in
D:\Data\PALReports\PALstyles.css, you should enter "../PALstyles.css".

If this field is blank, PAL will include the style sheet block, otherwise it will just include a
HTML link (<LINK REL) to the external style sheet file.

Index frame header include file
Default = (blank)

Pascal Analyzer208

Copyright © 2001-2025 Peganza

If you enter an URL in this field, PAL will include the file at the top of the index frame
page for HTML reports. This option is only available when HTML frames are selected. Use
this to include common header information on the index frame page, like company name,
logo etc.

Index frame footer include file
Default = (blank)

If you enter an URL in this field, PAL will include the file at the bottom of the index frame
page for HTML reports. This option is only available when HTML frames are selected. Use
this for common footer information.

Generate class tags
For every checkbox that you select, PAL will generate extra HTML code to select the
corresponding font class, as defined in the style sheet (see above). This will increase the
size of the HTML files considerably, so just select those font classes that you want to
customize. All options are by default selected.

For instance, to activate a special font for all identifier names, check "Identifier Name".
Then edit the font class definition ("IdN") in your style sheet file. Make sure the style
sheet is referenced in the "Style sheet URL" field.

Create CHM project files

Mark this checkbox if you want Pascal Analyzer to create CHM project files, in addition to
the generated HTML pages. This is especially handy if you have generated HTML files and
want full-text search. This option is only enabled if you have selected HTML as the report
format on the top of the tab page.

The CHM project files including the resulting CHM file will be written to the output
directory. You can either work with the project files in HTML Help Workshop, or compile
them directly from within Pascal Analyzer.

Default = No

Compile CHM project

Mark this checkbox if you want Pascal Analyzer to compile the CHM project, and produce
a compressed CHM file. You must first download and install "HTML Help Workshop
version 1.3" from Microsoft.

This option is only enabled if you have selected HTML as the report format on the top of
the tab page, and if you have marked the "Create CHM project files" option (see abouve).

When compiling, a log file will also be created in the output directory. It will have the
name format <ProjectName>.log. Check this file if errors occur.

Please note that the compilation for a help file can take a while. You can always create a
CHM project file, and then later decide to compile it manually with the help compiler.

Default = No

Main menu 209

Copyright © 2001-2025 Peganza

See also:

Options menu
Properties - General
Properties - Parser
Properties - Reports
Properties - Source
Properties - Switches

15.6.4 Properties - Parser

The Parser tab page is not available for a multi-project.

Target version

Pascal Analyzer210

Copyright © 2001-2025 Peganza

Select the compiler version targeted for the current analysis. Note that, although PAL
scans the source files in the same way as the compiler, it does not detect every syntax
error. Make sure that the source code compiles correctly for the specified target,
otherwise the results output by PAL may be incorrect.

PAL supports code written for these compilers/versions:

- Borland Pascal 7 (or earlier)

- Delphi 1
- Delphi 2
- Delphi 3
- Delphi 4
- Delphi 5
- Delphi 6
- Delphi 7

- Delphi 8 for .NET
- Delphi 2005 for Win32
- Delphi 2005 for .NET
- Delphi 2006 for Win32 (also Turbo Delphi for Win32)
- Delphi 2006 for .NET (also Turbo Delphi for .NET)
- Delphi 2007 for Win32
- Delphi 2007 for .NET
- Delphi 2009 for Win32
- Delphi 2010 for Win32

- Delphi XE for Win32

- Delphi XE2 for Win32
- Delphi XE2 for Win64
- Delphi XE2 for OSX

- Delphi XE3 for Win32
- Delphi XE3 for Win64
- Delphi XE3 for OSX

- Delphi XE4 for Win32
- Delphi XE4 for Win64
- Delphi XE4 for OSX
- Delphi XE4 for iOS Device
- Delphi XE4 for iOS Simulator

- Delphi XE5 for Win32
- Delphi XE5 for Win64
- Delphi XE5 for OSX
- Delphi XE5 for iOS Device
- Delphi XE5 for iOS Simulator
- Delphi XE5 for Android

- Delphi XE6 for Win32
- Delphi XE6 for Win64
- Delphi XE6 for OSX

Main menu 211

Copyright © 2001-2025 Peganza

- Delphi XE6 for iOS Device
- Delphi XE6 for iOS Simulator
- Delphi XE6 for Android

- Delphi XE7 for Win32
- Delphi XE7 for Win64
- Delphi XE7 for OSX
- Delphi XE7 for iOS Device
- Delphi XE7 for iOS Simulator
- Delphi XE7 for Android

- Delphi XE8 for Win32
- Delphi XE8 for Win64
- Delphi XE8 for OSX
- Delphi XE8 for iOS Device 32-bits
- Delphi XE8 for iOS Device 64-bits
- Delphi XE8 for iOS Simulator
- Delphi XE8 for Android

- Delphi 10 for Win32
- Delphi 10 for Win64
- Delphi 10 for OSX
- Delphi 10 for iOS Device 32-bits
- Delphi 10 for iOS Device 64-bits
- Delphi 10 for iOS Simulator
- Delphi 10 for Android

- Delphi 10.1 for Win32
- Delphi 10.1 for Win64
- Delphi 10.1 for OSX
- Delphi 10.1 for iOS Device 32-bits
- Delphi 10.1 for iOS Device 64-bits
- Delphi 10.1 for iOS Simulator
- Delphi 10.1 for Android

- Delphi 10.2 for Win32
- Delphi 10.2 for Win64
- Delphi 10.2 for OSX
- Delphi 10.2 for iOS Device 32-bits
- Delphi 10.2 for iOS Device 64-bits
- Delphi 10.2 for iOS Simulator
- Delphi 10.2 for Android
- Delphi 10.2 for Linux 64-bits

- Delphi 10.3 for Win32
- Delphi 10.3 for Win64
- Delphi 10.3 for OSX 32-bits
- Delphi 10.3 for OSX 64-bits
- Delphi 10.3 for iOS Device 32-bits
- Delphi 10.3 for iOS Device 64-bits
- Delphi 10.3 for iOS Simulator
- Delphi 10.3 for Android 32-bits
- Delphi 10.3 for Android 64-bits

Pascal Analyzer212

Copyright © 2001-2025 Peganza

- Delphi 10.3 for Linux 64-bits

- Delphi 10.4 for Win32
- Delphi 10.4 for Win64
- Delphi 10.4 for OSX 32-bits
- Delphi 10.4 for OSX 64-bits
- Delphi 10.4 for iOS Device 32-bits
- Delphi 10.4 for iOS Device 64-bits
- Delphi 10.4 for iOS Simulator
- Delphi 10.4 for Android 32-bits
- Delphi 10.4 for Android 64-bits
- Delphi 10.4 for Linux 64-bits

- Delphi 11 for Win32
- Delphi 11 for Win64
- Delphi 11 for OSX 32-bits
- Delphi 11 for OSX 64-bits
- Delphi 11 for iOS Device 32-bits
- Delphi 11 for iOS Device 64-bits
- Delphi 11 for iOS Simulator
- Delphi 11 for Android 32-bits
- Delphi 11 for Android 64-bits
- Delphi 11 for Linux 64-bits
- Delphi 11 for OSX ARM 64-bits

- Delphi 12 for Win32
- Delphi 12 for Win64
- Delphi 12 for OSX 32-bits
- Delphi 12 for OSX 64-bits
- Delphi 12 for iOS Device 32-bits
- Delphi 12 for iOS Device 64-bits
- Delphi 12 for iOS Simulator
- Delphi 12 for Android 32-bits
- Delphi 12 for Android 64-bits
- Delphi 12 for Linux 64-bits
- Delphi 12 for OSX ARM 64-bits

Default = Delphi 12 for Win64

PAL may also work with earlier versions of Turbo Pascal for DOS and Windows (prior to
Borland Pascal 7), but this has not been validated and consequently is not guaranteed. In
this case, select Borland Pascal 7 for best results.

For targets Delphi 1 and upward, PAL is able to load identifiers from the System unit in
Delphi's runtime library. This makes PAL aware of subprograms like Inc and FreeMem and
the TObject root class, resulting in reports that are more accurate and complete.

Build configuration
Default = <empty>

Enter here the build configuration for the Delphi project. For example, "Debug" or

Main menu 213

Copyright © 2001-2025 Peganza

"Release". Settings for the selected build configuration will then be collected from the
DPROJ-file for the project. It is recommended that you select a build configuration and
enter it here. If you leave the value blank, settings from the currently selected
configuration in the DPROJ-file will be used.

Please note that this setting is case-sensitive and must exactly match the name of the
build configuration as stored in the DPROJ-file.

Files parsed
Default = Both source and form files (DFM/NFM/XFM-files)

Select an option:

Both source/form
This is the default option. If PAL finds a form file (DFM/FMX/NFM/XFM-files), it will be
examined together with the corresponding PAS-file.

Only source
No form files will be examined.

It is recommended to let PAL also find and parse form files, so normally keep this option
selected.

Include files must exist
Default = Yes

Mark this checkbox if a missing include file should trigger an error and stop the analysis.
Keep this option selected if possible, since a vital missing include file could generate
incorrect results.

Use Delphi project options if found
Default = Yes

When a Delphi compiler and a DPR file is selected, PAL tries to load the corresponding
project options file. If successful, these options are used. For search paths, unit aliases
and defines, the options are merged with the options you select. This makes it possible
to instance, in PAL to provide the path to the VCL source files.

If a Delphi project file (DPR file) is parsed, search paths following the in keyword are
automatically followed.

The Status Report shows which search paths that are used for the particular analysis.

Parse implementation for non-reported units
Default = No

It is not necessary to parse implementation parts of units that are not reported.

Pascal Analyzer214

Copyright © 2001-2025 Peganza

Search folders

Select the drives and folders where PAL will search for source files. The folder containing
the primary source file is automatically searched, and there is no need to include this
folder.

Unlike the compiler, PAL does not require that all source code is available. However, it is
often best to make as much source code visible to PAL as possible.

Enter search folders, in priority order, separated with a semicolon e. g.:

c:\source\myunits;c:\source\generic;c:\source\proj1

Alternatively, press the ellipsis button to select the folders in a selection dialog.

You may also enter relative paths, like “..\..\generic”. The path will be resolved both
relative the folder where the project file (PAP-file) is located, and the folder where the
main file for the project is located.

If a Delphi project or package file (DPR, or DPK file) is parsed, search paths following
the in keyword are automatically followed.

Because the parser looks in the directories according to the order specified, it is wise to
put more frequently used directories first in the list.

User-defined environmental variables, like “$(UTILS)”, set in the Delphi IDE or in the
System settings in the Control Panel, may also be used.

Append Delphi Library Path
Default = Yes

Mark this checkbox if you want PAL to look for modules also in these folders. The Delphi
Library Path is set in the Delphi IDE under Tools|Environment Options and the Library tab
page.

Append Delphi browsing path
Default = Yes

Mark this checkbox if you want PAL to look for modules also in these folders. The Delphi
browsing path is set in the Delphi IDE under Tools|Environment Options and the Library
tab page.

Excluded search folders
Source code from these folders will NOT be parsed. Enter excluded folders separated with
a semicolon e. g.:
C:\source\notused;c:\source\3rdparty

Alternatively, press the ellipsis button to select the folders in a dialog box.

Main menu 215

Copyright © 2001-2025 Peganza

It is possible to select that an exclude folder should also apply to its subfolders. In this
way it is possible to exclude “C:\Program Files\Borland\Delphi7\Source” and all the
subfolders. When subfolders are excluded, the folder name is suffixed with “<+>”.

User-defined environmental variables, like “$(UTILS)”, set in the Delphi IDE or in the
System settings in the Control Panel, may also be used.

You can also use a relative path. The path is then relative to the folder where the project
file (PAP-file) is located.

Excluded files
Source code from these files will NOT be parsed. Enter excluded files separated with a
semicolon, e. g.:

myfile.pas;obsolete.pas

Alternatively, press the ellipsis button to select the files in a dialog box.

Unit aliases

Default for Win32 versions:
WinTypes=Windows;WinProcs=Windows;DbiTypes=BDE;DbiProcs=BDE;DbiErrs=BDE

Default for .NET versions:
WinTypes=Borland.Vcl.Windows;WinProcs=Borland.Vcl.Windows;DbiTypes=BDE;DbiProc
s=BDE;DbiErrs=BDE

See the Delphi documentation for an explanation of unit aliases.

Conditional defines

Specify conditional compilation directives that are valid for the current analysis. PAL
parses source code just like the compiler, and must treat conditional directives, meaning
that it will ignore sections of not activated code. You may also include defines within the
source code. Defines set in the Delphi project file will also be used, if found.

Enter conditional defines, separated with a semicolon e. g.:

Final;Special

Alternatively, press the ellipsis button to enter the defines in a dialog box.

PAL even initializes predefined defines just as the compiler does (e g 'WIN32'). It also
keeps track of the state of all compiler directives so that directives like {$IFOPT} will
function correctly.

The conditional compilation directive _PEGANZA_ is always defined.

Exclude identifiers from these folders in reports (but always report main file):

Pascal Analyzer216

Copyright © 2001-2025 Peganza

In addition, it is possible to select folders that should be considered in the generated
reports. Identifiers declared in source code from these folders will not appear in the
reports. The Totals Report and Third-party dependencies Report will however include
even these identifiers.

Enter excluded folders separated with a semicolon e. g.:

c:\source\myunits;c:\source\generic

Alternatively, press the ellipsis button to select the folders in a selection dialog.

It is possible to select that an exclude folder should also apply to its subfolders. In this
way it is possible to exclude “C:\Program Files\Borland\Delphi7\Source” and all the
subfolders. When subfolders are excluded, the folder name is suffixed with “<+>”.

User-defined environmental variables set in the Delphi IDE, may also be used.

You can also use a relative path. The path is then relative to the folder where the project
file (PAP-file) is located.

Expressions for $IF-directives, that evaluate to TRUE
In Delphi 6, the new $IF-directive was introduced. The $IF-directive is followed by an
expression, that evaluates to TRUE or FALSE. If you use $IF-directives, you must supply
all expressions that evaluate to TRUE, because PAL cannot always determine the value of
an expression. Enter the expressions separated with semicolons, like:

RTLVersion > 14;Declared(Windows)

Please observe that you do not need to include Defined-directives like
"Defined(MSWINDOWS)", because PAL manages to evaluate those directives.

When PAL’s parser finds a $IF-directive in code, it will try to evaluate it. If it is an
expression that you have supplied, it will be evaluated to TRUE, otherwise it will be
evaluated as FALSE. Directives that are evaluated as FALSE, imply that the
corresponding code is not activated.

Unit scopes (namespaces)
This field is only enabled (and relevant) if the compiler is set to Delphi 8 or higher
compilers. Press the ellipsis button to select the namespaces.

Default namespace
This field is only enabled (and relevant) if the compiler is set to Delphi 8 or higher
compilers.

See also:

Options menu
Properties - General
Properties - Format

Main menu 217

Copyright © 2001-2025 Peganza

Properties - Reports
Properties - Source
Properties - Switches

15.6.5 Properties - Switches

The Switches tab is not available for a multi-project.

On this tab, you can select which compiler switches that are active for the current
analysis. This is important for how PAL evaluates $IFOPT directives. For instance, if $R+
(range check) is activated, a directive {$IFOPT R+} will evaluate to TRUE, and the
following code is activated.

Not all compiler switches are included on this page. Only those that can be used with
$IFOPT are listed.

Pascal Analyzer218

Copyright © 2001-2025 Peganza

A better method than setting these switches is to maintain a common include file used
by all your modules. The purpose of the file is to set compiler directives and conditional
defines that dictate the compilation (and parsing by PAL). The include file directive $I is
used to embed the contents of the include file into the source file.

See also:

Options menu
Properties - General
Properties - Format
Properties - Parser
Properties - Reports
Properties - Source

15.6.6 Preferences - General

On the first tab page (General) there are some general settings:

Main menu 219

Copyright © 2001-2025 Peganza

Load latest project at startup
Default = Yes

Mark this checkbox if you want PAL to load the latest project at startup. Please observe
that this option and the “Show wizard at startup” option cannot both be selected.

Inform about new versions
Default = Yes

Mark this checkbox if you want to be notified when new versions of PAL are available. To
protect your privacy, no identifying information is transferred from your computer when
PAL checks for new versions. It is just a simple HTTP request to the Peganza web site to

Pascal Analyzer220

Copyright © 2001-2025 Peganza

retrieve the latest product version number. If you do not want to check automatically by
activating this option, select the "Check for newer version" menu item in the Help menu
to display this information.

Show wizard at startup
Default = Yes

Mark this checkbox if you want to activate the wizard when PAL is started. Please
observe that this option and the “Load project at startup” option cannot both be selected.

Show Start page
Default = Yes

Mark this checkbox if you want to show the start page with current news from Peganza.

Project folder
This is the folder that PAL suggests for new project files. Default is "C:\Documents and
Settings\<acc>\My Documents\Pascal Analyzer\Projects".

Suggest main file folder for project file
Default = No

Mark this checkbox if you want PAL to suggest the same folder as where the main file is
located, when saving a new project file. This overrides the setting for "Project folder"
(see above).

Auto-save project when analyzing
Default = Yes

Mark this checkbox if you want to automatically save the project file when the analysis is
started.

Number of report threads
Default = 2

This is the number of report threads that will be run in parallel, when reports are built.
For example, if you have a dual-core processor, the suitable value is probably two. For a
single-core processor, set it to one instead.

Enable report when done
Default = Yes

Mark this checkbox if you want reports to be accessible immediately when they have
been generated, without waiting for all reports to be generated.
Otherwise, the behaviour will be as in pre-PAL8, that reports are not available until all
work is done.

Main menu 221

Copyright © 2001-2025 Peganza

Show reports in multiple tab pages
Default = Yes

Mark this checkbox if you want reports to open in new tab pages. Otherwise, the
behaviour will be as in pre-PAL8, that only one report is visible at any time.

Reselect report
Default = Yes

Mark this checkbox if you want the active report to be reselected automatically when
analysis is done.

Display for "subprogram"
Default = subprogram

If you want to use another string than "subprogram" when displaying report and section
texts, you can enter the string here, for example "function". Enter it as the singular term
with small letters.

Show implementation line numbers in reports
Default = No

This option determines if the line number where a subprogram is declared is displayed in
the reports. If set to Yes, instead implementation line number is displayed. It has
meaning if you double-click on the line to jump to the source code. Either it will then
take you to the declaration or the implementation line. Often you would probably prefer
to reach the implementation. If so, then set this option to Yes.

CHM compiler path

Edit the path to the hhc.exe help compiler (Microsoft HTML Help Workshop) if needed.

Default = <PROGRAMFILES>\HTML Help Workshop\hhc.exe

Report list display
Default = Expanded to reports

Select how the report list will be displayed initially:

- Fully collapsed
- Expanded to report groups
- Expanded to reports
- Fully expanded

See also:

Pascal Analyzer222

Copyright © 2001-2025 Peganza

Options menu
Preferences - Source Code
Preferences - Editor

15.6.7 Preferences - Source Code

On the Source code tab page, select the action taken when double-clicking on a line in
the report viewer.

Double-clicking a line in a report gives this action
These options are available:

No action
Nothing happens when double-clicking.

Source file is opened and focused in the built-in editor (default)
If you want to quickly view the source code line, this is a convenient option. The file is
opened in the built-in editor. plus a button that closes the window.

Main menu 223

Copyright © 2001-2025 Peganza

Source file is opened and focused in the Delphi IDE
If Delphi is running, control is transferred to the source file in the code editor. This option
works with Delphi from version 5.

Source file is opened in an external application
If this option is selected, you must enter a complete path to the application, and a
command-line.

Source file is opened in the built-in editor, plus opened and focused in the Delphi IDE
This is a combination of the options to open in the built-in editor and in the Delphi IDE.
The Delphi IDE will be focused

Source file is opened in the Delphi IDE, plus opened and focused in the built-in editor.
This is a combination of the options to open in the Delphi IDE and in the built-in editor.
The editor will be focused

Path
Enter a complete path to the application, e.g "C:\WINDOWS\Notepad". This option is
only relevant when "Source file is opened in an external application" has been selected.

Command
Enter a command-line that is supplied as a parameter. In the command-line, use "%1"
for the source file path and "%2" for the row number. These strings will be substituted
for the real values when the call is done.

This option is only relevant when "Source file is opened in an external application" has
been selected.

For example, when configuring Notepad to open the source file, enter
"C:\WINDOWS\Notepad" as path, and "%1" for command.

Interact with Delphi IDEs
The plugins PALWIZ*.DLL enable Delphi to show the relevant code module when
double-clicking on a report line in Pascal Analyzer.

For all installed versions of Delphi 5, 6 and 7, the wizard will be registered under the
following registry key:

HKEY_CURRENT_USER\Software\Borland\Delphi\x.0\Experts
(exchange “x” for the version number).

For other versions:

Delphi 8
HKEY_CURRENT_USER\Software\Borland\BDS\2.0\Experts

Delphi 2005
HKEY_CURRENT_USER\Software\Borland\BDS\3.0\Experts

Delphi 2006
HKEY_CURRENT_USER\Software\Borland\BDS\4.0\Experts

Pascal Analyzer224

Copyright © 2001-2025 Peganza

Delphi 2007
HKEY_CURRENT_USER\Software\Borland\BDS\5.0\Experts

Delphi 2009
HKEY_CURRENT_USER\Software\CodeGear\BDS\6.0\Experts

Delphi 2010
HKEY_CURRENT_USER\Software\CodeGear\BDS\7.0\Experts

Delphi XE
HKEY_CURRENT_USER\Software\Embarcadero\BDS\8.0\Experts

Delphi XE2
HKEY_CURRENT_USER\Software\Embarcadero\BDS\9.0\Experts

Delphi XE3
HKEY_CURRENT_USER\Software\Embarcadero\BDS\10.0\Experts

Delphi XE4
HKEY_CURRENT_USER\Software\Embarcadero\BDS\11.0\Experts

Delphi XE5
HKEY_CURRENT_USER\Software\Embarcadero\BDS\12.0\Experts

Delphi XE6
HKEY_CURRENT_USER\Software\Embarcadero\BDS\14.0\Experts

Delphi XE7
HKEY_CURRENT_USER\Software\Embarcadero\BDS\15.0\Experts

Delphi XE8
HKEY_CURRENT_USER\Software\Embarcadero\BDS\16.0\Experts

Delphi 10
HKEY_CURRENT_USER\Software\Embarcadero\BDS\17.0\Experts

Delphi 10.1
HKEY_CURRENT_USER\Software\Embarcadero\BDS\18.0\Experts

Delphi 10.2
HKEY_CURRENT_USER\Software\Embarcadero\BDS\19.0\Experts

Delphi 10.3
HKEY_CURRENT_USER\Software\Embarcadero\BDS\20.0\Experts

Delphi 10.4
HKEY_CURRENT_USER\Software\Embarcadero\BDS\21.0\Experts

Delphi 11
HKEY_CURRENT_USER\Software\Embarcadero\BDS\22.0\Experts

Delphi 12

Main menu 225

Copyright © 2001-2025 Peganza

HKEY_CURRENT_USER\Software\Embarcadero\BDS\23.0\Experts

Delphi 12 64-bits
HKEY_CURRENT_USER\Software\Embarcadero\BDS\23.0\Experts x64

If you install any Delphi version after Pascal Analyzer has been installed, the registry
settings have to be updated. In this case, enter the Preferences dialog, mark check boxes
and click the button Update registry.

After clicking Update registry, the changes will take place the next time you start the
Delphi IDE. Of course, because the registry is modified, you must run under an account
that is allowed to do this, when clicking this button.

When updating the registry, the changes are immediately applied, regardless if you leave
the dialog by pressing the OK or Cancel button.

Buffered viewer
Default = Yes

Select this checkbox to load source files in a more efficient manner. The drawback is that
the source code file is locked by the viewer, so it cannot be edited by another application.
For example, if the file is loaded in the viewer you cannot at the same time edit and save
it in the Delphi IDE. If you want to be able to do so, you must deselect this option. This
may give longer loading times especially for large source code files.

Show line numbers
Default = Yes

Select this checkbox if you want line numbers to appear in the left margin of the source
viewer window.

Expand tab characters
Default = 8

Select the number of characters that a TAB character should be expanded to, when
viewing source code.

See also:

Options menu
Preferences - General
Preferences - Editor

15.6.8 Preferences - Editor

On the Editor tab page, select settings for the source code editor tab pages.

Pascal Analyzer226

Copyright © 2001-2025 Peganza

Backup to "__history" folder
Default = Yes

If you select this option, any changed source files will be backuped to a "__history" folder
below the current folder. This works in a similar way like in the RAD Studio IDE.

Initial document state
Default = Read only

Choose between different initial states for the document (source code file):

Main menu 227

Copyright © 2001-2025 Peganza

- Read only. source file will initially be read only
- Read only for files in foreign folder
- Writable, source file will be writable

It is at any moment possible to toggle between read-only and writeable state (see
File|Read Only), regardless of the initial document state.

Ask to reload
Default = Yes

If "Yes", a message will appear when PAL detects that a file has been changed outside
the application. You can then select to load the changed file into the editor window.

Use Tabs
Default = No

If "No", Tab characters will be converted to spaces, according to expand size (see next
option).

Expand size
Default = 8

Choose the width of a Tab character.

Show tabs
Default = No

Highlight selected line
Default = Yes

Hide/Show scrollbars
Default = No

Line wrap mode
Default = Wrap to window

Choose between:

- no wrap, text will not be wrapped if it does not fit into window and horizontal scrollbars
will be shown.
- wrap to ruler, line will be wrapped if it is longer than the right ruler
- wrap to window, line will be wrapped if it does not fit in the editor window

Show line numbers
Default = Yes

Pascal Analyzer228

Copyright © 2001-2025 Peganza

Selecting this option, lets line numbers appear in the left gutter.

Bound cursor
Default = No

Wrap ruler width
Default = 80

Show line ends
Default = No

Auto indent
Default = Yes

Show wrap ruler
Default = No

If turned on, shows a vertical ruler line for the right margin.

Show whitespace
Default = No

Keep blanks
Default = No

See also:

Options menu
Preferences - General
Preferences - Source Code

Help menu 229

Copyright © 2001-2025 Peganza

16 Help menu

Help|Contents

This command displays the help system.

Help|Visit Peganza on the Internet

This command opens Peganza's home page in your web browser. Read the latest
information about Pascal Analyzer and our other products. You will also find information
about updates and new versions.

Help|Check for newer version

This command checks if there is a newer version of PAL available. This is the same kind
of check that can be done automatically when starting the program, see
Preferences|General.

Help|About

Displays the "About" dialog box. It will show you among other things, the version
number for the application.

Click "Refresh" to update the information about your support plan, and when it expires.

If you need to move the installation to another computer, click "Deactivate license". Then
you will be able to activate the license on the new computer. The installation on the old
computer will not longer work.

See the license.txt file in the program directory for more information.

See also:

Main menu

Pascal Analyzer230

Copyright © 2001-2025 Peganza

Index
- / -
/A- 56

/A+ 56

/AUTO 52

/BUILD 56

/CBP 56

/CD1 56

/CD101ANDROID 56

/CD101IOSDEV 56

/CD101IOSDEV64 56

/CD101IOSSIM 56

/CD101OSX 56

/CD101W32 56

/CD101W64 56

/CD102ANDROID 56

/CD102IOSDEV 56

/CD102IOSDEV64 56

/CD102IOSSIM 56

/CD102LINUX64 56

/CD102OSX 56

/CD102W32 56

/CD102W64 56

/CD10ANDROID 56

/CD10IOSDEV 56

/CD10IOSDEV64 56

/CD10IOSSIM 56

/CD10N 56

/CD10OSX 56

/CD10W 56

/CD10W32 56

/CD10W64 56

/CD11N 56

/CD11W 56

/CD12W 56

/CD14W 56

/CD2 56

/CD3 56

/CD4 56

/CD5 56

/CD6 56

/CD7 56

/CD8 56

/CD9N 56

/CD9W 56

/CDXE2OSX 56

/CDXE2W32 56

/CDXE2W64 56

/CDXE3OSX 56

/CDXE3W32 56

/CDXE3W64 56

/CDXE4IOSDEV 56

/CDXE4IOSSIM 56

/CDXE4OSX 56

/CDXE4W32 56

/CDXE4W64 56

/CDXE5AND 56

/CDXE5IOSDEV 56

/CDXE5IOSSIM 56

/CDXE5OSX 56

/CDXE5W32 56

/CDXE5W64 56

/CDXE6AND 56

/CDXE6IOSDEV 56

/CDXE6IOSSIM 56

/CDXE6OSX 56

/CDXE6W32 56

/CDXE6W64 56

/CDXE7AND 56

/CDXE7IOSDEV 56

/CDXE7IOSSIM 56

/CDXE7OSX 56

/CDXE7W32 56

/CDXE7W64 56

/CDXE8AND 56

/CDXE8IOSDEV 56

/CDXE8IOSDEV64 56

/CDXE8IOSSIM 56

/CDXE8OSX 56

/CDXE8W32 56

/CDXE8W64 56

/CDXEW 56

/D 56

/FA 56

/FM 56

/FR 56

/I 56

/L 56

/LB 56

/LG 56

/NAME 56

/P 56

Index 231

Copyright © 2001-2025 Peganza

/PRIO 56

/Q 56

/R 56

/S 56

/T 56

/X 56

/XF 56

- _ -
PEGANZA 209

- 6 -
64-bits 7, 35

- A -
about the product 229

abstract methods 13

activation 53

all reports 72

Alt+Left 186

Alt+Right 186

ambiguous unit reference 76

Analysis menu 187

ANSI 65

arrange 188

arrange windows 186

array properties

set/referenced within methods 106

assert 13

auto indent 225

auto-save 218

- B -
back 186

backup 191

backup to _history folder 225

bad assignments 42

bad pointer usage 76

bad typecast 76

binary files 144

Bindings Report 150

bound cursor 225

Brief Cross-reference Report 154

browser 65

browsing path 209

buffered viewer 222

- C -
Call Index Report 153

Call Tree Report 152

check for newer version 229

CHM compiler path 218

class

constructors with bad names 126

destructors with bad names 126

multiple destructors 82

Class Field Access Report 172

class fields

exposed by properties but do not start with "F"
126

not declared in private section 126

not declared in private/protected sections 126

zero-initialized in constructor 112

Class Hierarchy Report 172

Class Index Report 170

class list 186

Class Summary Report 171

class tags 202

clone 167

close 181

Code Reduction Report 112

code-blocks

empty 82

Command Line Options 52

command-line 52

command-line analyzer 56

compile CHM project 202

Complexity Report 137

condition

evaluates to constant value 82

conditional defines 209

Conditional Symbols Report 161

constructors

bad name 126

no call to inherited 82

Control Alignment Report 174

Control Index Report 173

Control Size Report 174

Control Tab Order Report 175

Control Warnings Report 176

Pascal Analyzer232

Copyright © 2001-2025 Peganza

Convention Compliance Report 126

copy 184

create CHM project files 202

Cross-reference Report 155

Ctrl+A 184

Ctrl+Alt+C 65, 186

Ctrl+Alt+Down 65

Ctrl+Alt+I 65

Ctrl+Alt+Left 65, 186

Ctrl+Alt+Right 65, 186

Ctrl+Alt+S 65, 186

Ctrl+Alt+U 65

Ctrl+Alt+Up 65

Ctrl+C 184

Ctrl+Enter 65

Ctrl+F 65, 185

Ctrl+F4 181

Ctrl+G 185

Ctrl+H 185

Ctrl+Left 65

Ctrl+M 181

Ctrl+Mouse wheel 65

Ctrl+N 181

Ctrl+O 181

Ctrl+P 181

Ctrl+Right 65

Ctrl+S 181

Ctrl+V 184

Ctrl+X 184

Ctrl+Z 184

customize "subprogram" 42

cut 184

- D -
deactivation 229

decision points 137, 167

Delphi 10.2 Tokyo 15

Delphi 10.3 Rio 15

Delphi 10.4 Sydney 15

Delphi 11 Alexandria 15

Delphi 12 Athens 15

Delphi IDE 53, 222

deprecated directive 162

destructors

bad name 126

more than one 82

no call to inherited 82

no override directive 82

directives

deprecated 162

experimental 162

inline 162

library 162

platform 162

Directives Report 162

DP 137

dual monitors 65

Duplicate Identifiers Report 147

- E -
Edit menu 184

editor 65

editor color 188

editor font 188

editor options 225

enable report when done 218

encoding 144

environment variables 209

Events Report 179

Exception Report 154

Exit-statement

dangerous 82

expand size 225

experimental directive 162

- F -
F11 188

F12 188

F3 65, 185

F8 186

F9 186

file date/time 144

File menu 181

file size 144

finalization section 144

find 185

folders 63

Form Report 179

forward 186

forward directive

interface section 82

frameborders 202

Index 233

Copyright © 2001-2025 Peganza

frames 202

function

called only as procedures 112

exposed by properties but do not start with "Get"
 126

result not set 82

- G -
generics 13

go to line 185

- H -
Help menu 229

help report 165

hide empty report sections 196

hide/show scrollbars 225

highlight selected line 225

how to use 53

How to use PALCMD.EXE and PALCMD32.EXE
56

- I -
identifiers

local only used at lower scope 112

local possibly set and referenced once 112

local possibly set more than once without
referencing in-between 112

local set and referenced once 112

local set more than once without referencing
in-between 112

not used 112

unsuitable name 126

zero-initialized in constructor 112

Identifiers Report 146

include footer 202

include header 202

Inconsistent Case Report 133

index error 76

index frame

footer include file 202

header include file 202

stylesheet 202

initial state 225

initialization section 144

inline directive 162

install in Delphi IDE 53

installation folders 63

interfaced class identifiers

not used outside of unit 82

interfaced identifiers

not used outside of unit 82

Introduction 7

- K -
keep blanks 225

Known limitations 13

- L -
labels

inside for-loops 82

inside repeat/while-loops 82

Lattix 157

library directive 162

library path 209

licensing model 15

limitations 13

line numbers 222

line wrap mode 225

lines of code 137

Linux 15

Literal Strings/Numbers Report 148

LOC 137

long strings

local initialized to empty strings 112

local possibly initialized to empty strings 112

- M -
Main Window 65

map file report 166

marker for suppressed lines 191

Memory Report 123

methods

called once from method in same class 112

virtual but not overridden 106

missing files 144

Missing Property Report 178

Module Call Tree Report 164

module subprogram list 186

Module Totals Report 137

Pascal Analyzer234

Copyright © 2001-2025 Peganza

modules

not added to DPR 157

not needed in DPR 157

Modules Report 144

Most Called Report 151

multi-projects 7

- N -
namespaces 209

navigation features 65

new multi-project 181

new project 181

new versions 218

next reference 186

NextGen Readiness Report 135

- O -
object

bad creation 82

Object-oriented Metrics Report 141

one file for each report 202

open 181

optimal uses list 157

Optimization Report 106

Options - General 191

Options - Parser 209

Options - Reports 196

Options - Switches 217

Options menu 188

overloaded methods 13

- P -
PAL.DEBUG.EXE 53

PAL.EXE 53

PAL.INI 63

PAL32.DEBUG.EXE 53

PAL32.EXE 53

PALCMD.EXE 56

PALCMD32.EXE 56

PALOFF 191

PALWIZ*.DLL 65, 222

parameters

out parameter read before set 82

parse all 188

paste 184

platform directive 162

pointer, bad usage 76

Preferences - General 218

prefix 134

Prefix Report 134

previous reference 186

print 181

printer setup 181

procedures

exposed by properties but do not start with "Set"
 126

project folder 218

Properties - Format 202

Properties - Source 222

property access 76

property value 178

Property Value Report 178

- R -
record parameters

unmodified and missing "const" 106

redo 184

relative path 42

relative paths 209

replace 185

report list 65, 218

report tree color 188

report tree font 188

reports 71

reports in multible tab pages 218

reselect report 218

Reverse Call Tree Report 153

run 187

- S -
samples 63

save 181

save as 181

search 185

search folders 209

Search menu 185

searched strings report 165

select all 184

shadowed identifiers 126

Index 235

Copyright © 2001-2025 Peganza

SHDOCVW.DLL 65

Shift+F3 65

show counter in section header 202

show line ends 225

show line numbers 225

show report list 186

show section index 202

show source editor 186

show tabs 225

show toolbar 186

show whitespace 225

show wrap ruler 225

Similarity Report 148

sorted members 170

soundex 148

statements

empty 82

short-circuited 82

status bar 65

Status Report 75

stay on top 188

stop 187

string parameters

unmodified and missing "const" 106

Strong Warnings Report 76

stylesheet 202

subfolders 202

subprogram 42

subprogram calls itself 76

Subprogram Index Report 149

Subprogram Parameters Report 157

subprograms

empty parameter list 82

only called once 112

recursive 82

support plan 229

suppressed lines 191

switches 217

syntax anomalies 82

- T -
tab characters 222

target 209

Third-party dependencies Report 150

threads, number of 218

to-do 163

To-Do Report 163

toolbar 65, 188

Totals Report 136

typecast, bad 76

types

exception types that do not start with "E" 126

interface types that do not start with "I" 126

ordinay that do not start with "T" 126

pointer types that do not start with "P" 126

- U -
undo 184

Unicode 35, 65

unique files 144

unit aliases 209

unit scopes 209

unit usage 157

unit, ambiguous reference 76

unsupported types 135

use tabs 225

Used Outside Report 157

Uses Report 157

UTF-8 75

- V -
value parameters

possibly set 82

set 82

var parameters

never set 82

possibly never set 82

variables

absolute 82

bad thread-local 82

bigger assigned to smaller 82

local possibly referenced before set 82

local referenced before set 82

local set not later used 82

never referenced 82

never set 82

possibly never referenced 82

possibly never set 82

View menu 186

viewer 65

viewer color 188

viewer font 188

Pascal Analyzer236

Copyright © 2001-2025 Peganza

virtual methods

not overridden 106

- W -
Warnings Report 82

What's new in version 4? 49

What's new in version 5? 46

What's new in version 6? 42

What's new in version 7? 39

What's new in version 8? 35

What's new in version 9? 15

wizard 181, 218

wrap ruler width 225

	Introduction
	Known limitations
	What's new in version 9 (April 2017, updated May 2025)?
	What's new in version 8 (May 2016)?
	What's new in version 7 (November 2013)?
	What's new in version 6 (August 2011)?
	What's new in version 5 (May 2010)?
	What's new in version 4 (October 2006)?
	Command-Line Options for PAL.EXE and PAL32.EXE
	How to use PAL.EXE and PAL32.EXE
	How to use PALCMD.EXE and PALCMD32.EXE
	Installation folders
	Main window
	Reports
	All Reports
	General Reports
	Status Report
	Strong Warnings Report
	Warnings Report
	Optimization Report
	Code Reduction Report
	Memory Report
	Convention Compliance Report
	Inconsistent Case Report
	Prefix Report
	NextGen Readiness Report

	Metrics Reports
	Totals Report
	Module Totals Report
	Complexity Report
	Object-oriented Metrics Report

	Reference Reports
	Modules Report
	Identifiers Report
	Duplicate Identifiers Report
	Similarity Report
	Literal Strings/Numbers Report
	Subprogram Index Report
	Bindings Report
	Third-party Dependencies Report
	Most Called Report
	Call Tree Report
	Reverse Call Tree Report
	Call Index Report
	Exception Report
	Brief Cross-reference Report
	Cross-reference Report
	Used Outside Report
	Subprogram Parameters Report
	Uses Report
	Conditional Symbols Report
	Directives Report
	To-Do Report
	Module Call Tree Report
	Help Report
	Searched Strings Report
	Map File Report
	Clone Report

	Class Reports
	Class Index Report
	Class Summary Report
	Class Hierarchy Report
	Class Field Access Report

	Control Reports
	Control Index Report
	Control Alignment Report
	Control Size Report
	Control Tab Order Report
	Control Warnings Report
	Property Value Report
	Missing Property Report
	Form Report
	Events Report

	Main menu
	File menu
	Edit menu
	Search menu
	View menu
	Analysis menu
	Options menu
	 Properties - General
	 Properties - Reports
	 Properties - Format
	 Properties - Parser
	 Properties - Switches
	 Preferences - General
	 Preferences - Source Code
	 Preferences - Editor

	Help menu

